跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瀅羽
研究生(外文):Chen,Ying-Yu
論文名稱:視覺密碼中不擴展的(k, n)門檻值秘密影像分享方法之研究
論文名稱(外文):A Study of (k, n)-threshold Secret Image Sharing Schemes in Visual Cryptography without Expansion
指導教授:阮夙姿
指導教授(外文):Juan Su-Tzu
口試委員:陳健輝陳宗和杜迪榕黃育銘
口試日期:2011-06-27
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:51
中文關鍵詞:視覺密碼(kn)-門檻秘密分享漸進式資訊安全片段
外文關鍵詞:visual cryptography(k, n)-thresholdsecret sharingprogressiveinformation securityshare
相關次數:
  • 被引用被引用:0
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
視覺密碼 (Visual cryptography),是將一張秘密影像加密分成n張片段 (share);當只拿到任何一張片段時,並無法得知秘密影像中的內容,一定要將所有片段疊合起來,才會顯示秘密影像中內容。而(k, n)-門檻機密分享機制 ((k, n)-threshold secret sharing) 則同樣將秘密影像加密分成n張片段,但在解密時,只需任何k張片段做疊合就可顯示秘密影像;反之,當疊合片段張數少於k時,則無法得知秘密影像中的內容。其中,在此機制下有個很重要的參數:'a',如果'a'越大,就代表疊合後顯示的秘密影像越清楚。另外,漸進式視覺機密分享 (progressive visual secret sharing),是如果疊合越多張片段,疊合出的影像就會越明顯的機密分享機制。
本論文主要研究成果是提出一種視覺密碼中像素不需擴展的(k, n)-門檻機密分享機制;此方法是利用組合學的概念所設計出的。對於視覺密碼中的(k, n)-門檻機密分享機制,過去大部分學者的所提出的方法,其像素皆會擴展。本論文提出對任意正整數n>=k>=2時,一種像素不擴展,且'a'值較前人所提出的更好,也就是說還原後的影像將更清楚的(k, n)-門檻機密分享機制。由於還原影像時,將會滿足越多張片段時影像越清楚。因此本文針對任意二正整數n>=k>=2,提出的(k, n)-門檻機密分享機制,可達像素不擴展、有較好的'a'值且是漸進式視覺機密分享之三項優勢。

Visual cryptography (VC, for short) encrypts the secret image into n shares (transparency). In this way, we cannot see any information from any one share, and decrypt the original image by stacking all of the shares. In this thesis, we extend it to the k out of n secret sharing scheme, (k, n)-threshold secret sharing scheme, which encrypts the secret image in the same way, but decrypts the original image by stacking at least k shares. If one stacks less than k shares, one cannot recognize the secret image. An important parameter when discussing a secret sharing scheme in VC is contrast 'a'. If 'a' is larger, the recoverd image is clearer. Another subject is progressive visual secret sharing, that means when more shares are stacked progressively, the combined share will be clearer.
In this thesis, we construct a new (k, n)-threshold secret sharing scheme in VC for any positive integers n>=k>=2 by using a method of combination, and the size of each share is as small as the original image. That is, there is no expansion needed while some of the previous scheme need. In the same time, our scheme has better contrast 'a' than previous method and it is also a (k, n)-threshold progressive visual secret sharing scheme.
誌謝 I
中文摘要 II
Abstract III
Contents IV
List of Figures VI
List of Tables VII
1 Introduction 1
2 Related Work 3
2.1 Noar and Shamir's Scheme . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Effcient Solutions for Small k and n . . . . . . . . . . . . . . . 3
2.1.2 A General k Out of k Scheme . . . . . . . . . . . . . . . . . . . . 6
2.1.3 A General k Out of n Scheme . . . . . . . . . . . . . . . . . . . . 7
2.2 Fang et al.’s Scheme with Non-Expansion . . . . . . . . . . . . . . . 7
3 Preliminary 10
4 Main Results 13
4.1 A (k, n)-threshold Secret Sharing Scheme in VC: CJ Scheme . . 14
4.2 The Proof of CJ Scheme . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 CJ Scheme is PVSS scheme . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Some Experimental Results of CJ Scheme . . . . . . . . . . . . . . . 18
5 Conclusion 28
References 30
Appendix
A : The Proof of Theorem 4.1 32
[1] N. Alon and J. Spencer, The probabilistic method. Wiley, 1992.
[2] G. R. Blakley, "Safeguarding cryptographic keys," Proceedings of AFIPS, Vol. 48, pp. 313-317, 1979.
[3] C. Blundo, A. D. Santis, and D. R. Stinson, "On the contrast in visual cryptography schemes," Journal of Cryptology, Vol. 12, pp. 261-89, 1999.
[4] J. L. Carter and M. N. Wegman, "Universal classes of hash functions," Journal of Computer and System Sciences 18, pp. 143-154, 1979.
[5] S. K. Chen and J. C. Lin, "Fault-tolerant and progressive transmission of images," Pattern Recognition, Vol. 38, pp. 2466-2471, 2005.
[6] P. A. Eisen and D. Stinson, "Threshold visual cryptography schemes with speci ed whiteness levels of reconstructed pixels," Designs, Codes and Cryptography, Vol. 25, pp. 15-61, 2002.
[7] W. P. Fang, "Multi-layer progressive secret image sharing," Proceedings of the 7th WSEAS, Greece, pp. 112-116, 2007.
[8] W. P. Fang and J. C. Lin, "Progressive viewing and sharing of sensitive images," Pattern Recognition and Image Analysis, Vol. 16, pp. 638-642, 2006.
[9] W.-P. Fang, S.-J. Lin, and J.-C. Li, "Visual cryptography (VC) with nonexpanded shadow images: a hilbert-curve approach," Proceedings of IEEE International Conference on Intelligence and Security Informatics, pp. 271-272, 2008.
[10] D. Hilbert, "U eber die stetige abbildung einer linie aufein flachenstuck," Mathematische Annalen, Vol. 38, pp. 459-460, 1891.
[11] T. Hofmeister, M. Krause, and H. U. Simon, "Contrast-optimal k out of n secret sharing schemes in visual cryptography," Theory of Computer Science, Vol. 240, pp. 471-485, 2000.
[12] Y.-C. Hou and Z.-Y. Quan, "Progressive visual cryptography with unexpanded shares," IEEE Transactions on Circuits and Systems for Video Technology, to appear.
[13] C. C. Lin and W. H. Tsai, "Secret multimedia information sharing with data hiding capability by simple logic operations," Pattern Recognition and Image Analysis, Vol. 14(4), pp. 594-600, 2004.
[14] N. Linial and N. Nisan, "Aprroximate inclusion-exlusion," Combinatorica, Vol. 10, pp. 349-365, 1990.
[15] M. Naor and A. Shamir, "Visual cryptography," Eurocrypt94, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Vol. 950, pp. 1-12, 1995.
[16] A. Shamir, "How to share a secret," Communications of the ACM, Vol. 22, pp. 612-613, 1979.
[17] M. N. Wegman and J. L. Carter, "New hash functions and their use in authentication and set equality," Journal of Computer and System Sciences, Vol. 22, pp. 265-279, 1981.
[18] C. N. Yang, "New visual secret sharing schemes using probabilistic method," Pattern Recognition Letters, Vol. 25(4), pp. 481-495, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊