# 臺灣博碩士論文加值系統

(44.200.27.215) 您好！臺灣時間：2024/04/15 04:58

:::

### 詳目顯示

:

• 被引用:0
• 點閱:424
• 評分:
• 下載:71
• 書目收藏:0
 視覺密碼 (Visual cryptography)，是將一張秘密影像加密分成n張片段 (share)；當只拿到任何一張片段時，並無法得知秘密影像中的內容，一定要將所有片段疊合起來，才會顯示秘密影像中內容。而(k, n)-門檻機密分享機制 ((k, n)-threshold secret sharing) 則同樣將秘密影像加密分成n張片段，但在解密時，只需任何k張片段做疊合就可顯示秘密影像；反之，當疊合片段張數少於k時，則無法得知秘密影像中的內容。其中，在此機制下有個很重要的參數:'a'，如果'a'越大，就代表疊合後顯示的秘密影像越清楚。另外，漸進式視覺機密分享 (progressive visual secret sharing)，是如果疊合越多張片段，疊合出的影像就會越明顯的機密分享機制。本論文主要研究成果是提出一種視覺密碼中像素不需擴展的(k, n)-門檻機密分享機制；此方法是利用組合學的概念所設計出的。對於視覺密碼中的(k, n)-門檻機密分享機制，過去大部分學者的所提出的方法，其像素皆會擴展。本論文提出對任意正整數n>=k>=2時，一種像素不擴展，且'a'值較前人所提出的更好，也就是說還原後的影像將更清楚的(k, n)-門檻機密分享機制。由於還原影像時，將會滿足越多張片段時影像越清楚。因此本文針對任意二正整數n>=k>=2，提出的(k, n)-門檻機密分享機制，可達像素不擴展、有較好的'a'值且是漸進式視覺機密分享之三項優勢。
 Visual cryptography (VC, for short) encrypts the secret image into n shares (transparency). In this way, we cannot see any information from any one share, and decrypt the original image by stacking all of the shares. In this thesis, we extend it to the k out of n secret sharing scheme, (k, n)-threshold secret sharing scheme, which encrypts the secret image in the same way, but decrypts the original image by stacking at least k shares. If one stacks less than k shares, one cannot recognize the secret image. An important parameter when discussing a secret sharing scheme in VC is contrast 'a'. If 'a' is larger, the recoverd image is clearer. Another subject is progressive visual secret sharing, that means when more shares are stacked progressively, the combined share will be clearer.In this thesis, we construct a new (k, n)-threshold secret sharing scheme in VC for any positive integers n>=k>=2 by using a method of combination, and the size of each share is as small as the original image. That is, there is no expansion needed while some of the previous scheme need. In the same time, our scheme has better contrast 'a' than previous method and it is also a (k, n)-threshold progressive visual secret sharing scheme.
 誌謝 I中文摘要 IIAbstract IIIContents IVList of Figures VIList of Tables VII1 Introduction 12 Related Work 32.1 Noar and Shamir's Scheme . . . . . . . . . . . . . . . . . . . . . . 32.1.1 Effcient Solutions for Small k and n . . . . . . . . . . . . . . . 32.1.2 A General k Out of k Scheme . . . . . . . . . . . . . . . . . . . . 62.1.3 A General k Out of n Scheme . . . . . . . . . . . . . . . . . . . . 72.2 Fang et al.’s Scheme with Non-Expansion . . . . . . . . . . . . . . . 73 Preliminary 104 Main Results 134.1 A (k, n)-threshold Secret Sharing Scheme in VC: CJ Scheme . . 144.2 The Proof of CJ Scheme . . . . . . . . . . . . . . . . . . . . . . . 144.3 CJ Scheme is PVSS scheme . . . . . . . . . . . . . . . . . . . . . . 154.4 Some Experimental Results of CJ Scheme . . . . . . . . . . . . . . . 185 Conclusion 28References 30AppendixA : The Proof of Theorem 4.1 32
 [1] N. Alon and J. Spencer, The probabilistic method. Wiley, 1992.[2] G. R. Blakley, "Safeguarding cryptographic keys," Proceedings of AFIPS, Vol. 48, pp. 313-317, 1979.[3] C. Blundo, A. D. Santis, and D. R. Stinson, "On the contrast in visual cryptography schemes," Journal of Cryptology, Vol. 12, pp. 261-89, 1999.[4] J. L. Carter and M. N. Wegman, "Universal classes of hash functions," Journal of Computer and System Sciences 18, pp. 143-154, 1979.[5] S. K. Chen and J. C. Lin, "Fault-tolerant and progressive transmission of images," Pattern Recognition, Vol. 38, pp. 2466-2471, 2005.[6] P. A. Eisen and D. Stinson, "Threshold visual cryptography schemes with speci ed whiteness levels of reconstructed pixels," Designs, Codes and Cryptography, Vol. 25, pp. 15-61, 2002.[7] W. P. Fang, "Multi-layer progressive secret image sharing," Proceedings of the 7th WSEAS, Greece, pp. 112-116, 2007.[8] W. P. Fang and J. C. Lin, "Progressive viewing and sharing of sensitive images," Pattern Recognition and Image Analysis, Vol. 16, pp. 638-642, 2006.[9] W.-P. Fang, S.-J. Lin, and J.-C. Li, "Visual cryptography (VC) with nonexpanded shadow images: a hilbert-curve approach," Proceedings of IEEE International Conference on Intelligence and Security Informatics, pp. 271-272, 2008.[10] D. Hilbert, "U eber die stetige abbildung einer linie aufein flachenstuck," Mathematische Annalen, Vol. 38, pp. 459-460, 1891.[11] T. Hofmeister, M. Krause, and H. U. Simon, "Contrast-optimal k out of n secret sharing schemes in visual cryptography," Theory of Computer Science, Vol. 240, pp. 471-485, 2000.[12] Y.-C. Hou and Z.-Y. Quan, "Progressive visual cryptography with unexpanded shares," IEEE Transactions on Circuits and Systems for Video Technology, to appear.[13] C. C. Lin and W. H. Tsai, "Secret multimedia information sharing with data hiding capability by simple logic operations," Pattern Recognition and Image Analysis, Vol. 14(4), pp. 594-600, 2004.[14] N. Linial and N. Nisan, "Aprroximate inclusion-exlusion," Combinatorica, Vol. 10, pp. 349-365, 1990.[15] M. Naor and A. Shamir, "Visual cryptography," Eurocrypt94, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Vol. 950, pp. 1-12, 1995.[16] A. Shamir, "How to share a secret," Communications of the ACM, Vol. 22, pp. 612-613, 1979.[17] M. N. Wegman and J. L. Carter, "New hash functions and their use in authentication and set equality," Journal of Computer and System Sciences, Vol. 22, pp. 265-279, 1981.[18] C. N. Yang, "New visual secret sharing schemes using probabilistic method," Pattern Recognition Letters, Vol. 25(4), pp. 481-495, 2004.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 使用智慧卡建立複合式安全認證機制 2 新視覺化密碼編碼法的分析 3 以DWT-SVD為基礎之影像分享浮水印機制 4 利用有意義圖像之視覺密碼 5 植基於多維空間的機密影像分享方法 6 量子類神經元網路於視覺密碼學之應用研究 7 視覺密碼學於XML平台之研究 8 植基於視覺密碼學之加解密系統 9 適用車載網路之具容錯能力的可鑑別群體金鑰轉移機制 10 三維多邊形模型之視覺密碼 11 新型的(k,n)多秘密視覺密碼 12 有意義分享圖像之視覺簽章核對研究 13 區域增值式多機密圖像分享 14 基於隨機網格之增值式視覺秘密分享 15 有意義且不擴展分享影像之漸進式視覺密碼

 無相關期刊

 1 具安全性與匿名性的電子商務機制之研究 2 流行鋼琴和弦轉位訓練系統 3 建構在一個階層式組織架構上的人臉特徵分析 4 客製化腦性麻痺使用者鍵盤輔具之研究 5 像素不擴展下可容錯視覺機密影像配置系統之研究 6 積體電路設計應用於發光二極體多元色脈波寬度調變之研究 7 自動光功率控制系統設計應用於RGB LED色溫研究 8 電容式轉阻放大器設計於紅外線陣列讀取電路之研究 9 電力線通訊系統設計應用於發光二極體傳輸之研究 10 服務科學中基於增量約略集的屬性選擇方法 11 檢驗產業群聚的外溢效果: 關係鏈結的觀點 12 建構以精熟學習理論為基礎之智慧型測驗系統 13 應用模組化平台策略於網路創新服務: 以KKBOX為例 14 機器人在未知室內環境的全域覆蓋路徑規劃 15 平均漢米爾頓迴圈

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室