|
1. 中文文獻 何友鋒、林建孙、王小璘(民85),「住孛社區多目標規劃之研究」,設計學報。 林信成、彭啟峰 (民83) ,「Oh! Fuzzy模糊理論剖析」,第三波出版。 簡禎富(民96),「決策分析與管理」,雙葉出版。
2. 英文文獻(順序全改) Black, F and Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–59. Company, R., Jódar, L., Pintos, J.R and Roselló, M.D., 2010. Computing optio pricing models under transaction costs. Computers and Mathematics with Applications 59, 651-662. Company, R., Jódar, L and Pintos, J.R., 2009. A numerical method for European Option Pricing with transaction costs nonlinear equation. Mathematical and Computer Modelling 50, 910-920. Damgaard, A., 2006. Computation of reservation prices of options with proportional transaction costs. Journal of Economic Dynamics & Control 30, 415-444. Dokuchaev, N.G and Savkin, A.V., 1998. The pricing of options in a financial market model with transaction costs and uncertain volatility. Journal of Multinational Financial Management 8, 353–364. Fang, Y., Lai, K.K., Wang, S.Y., 2005. Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research 175, 879-893. Gondzio, J., Kouwenberg, R., Vorst, T., 2000. Hedging Options under Transaction Costs and Stochastic Volatility. Gao, P.W., 2009. Options strategies with the risk adjustment. European Journal of Operational Research 192, 975–980. Horasanli, M., 2008. Hedging strategy for a portfolio of options and stocks with linear programming. Applied Mathematics and Computation 199, 804–810. Lauterbach, B., Schultz, P., 1990. Pricing Warrants: An Empirical Study of the Black-Scholes Model and Its Alternatives. The Journal of Finance 45 No.4,1181-1209. Lin, C.C., 2011. Option hedging portfolios with minimum transaction lots, working paper submitted to European Journal of Operational Reaserch. Lee, C.F., Tzeng, G.H., Wang, S.Y., 2005. A new application of fuzzy set theory to the Black–Scholes option pricing model. Expert Systems with Applications 29, 330–342. Lee, E.S., Li, R.J., 1993, Fuzzy multiple objective programming and compromise programming with Pareto optimum. Fuzzy Sets and Systems 53, 275-288. Li, X., Qin, Z.F., Kar, S., 2010. Mean-variance-skewness model for portfolio selection with fuzzy returns. European Journal of Operational Research 202, 239–247. Pirjetä, A., Ikäheimo, S., Puttonen , V., 2010. Market pricing of executive stock options and implied risk preferences. Journal of Empirical Finance 17, 394-412. Papahristodoulou, C., 2004. Option strategies with linear programming. European Journal of Operational Research 157, 246–256. Wu, H.C., 2004. Pricing European options based on the fuzzy pattern of Black–Scholes formula. Computers & Operations Research 31, 1069 –1081. Wu, H.C., 2007. Using fuzzy sets theory and Black–Scholes formula to generate pricing boundaries of European options. Applied Mathematics and Computation 185, 136-146. Scheuenstuhl, G., Zagst, R., 2008. Integrated portfolio management with options. European Journal of Operational Research 185, 1477–1500. Yaghoobi, M.A., Tamiz, M., 2007. A note on article “A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function”. European Journal of Operational Research 176, 636-640. Zadeh, L.A., 1965. Fuzzy set. Information and control 8, 338-353. Zakamouline, V.I., 2006. European option pricing and hedging with both fixed and proportional transaction costs. Journal of Economic Dynamics & Control 30, 1–25. 3.電子文獻 “Taiwan Future Exchange 臺灣期貨交易所”,http://www.taifex.com.tw/ chinese/ home.asp/
|