跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/15 06:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏懋全
研究生(外文):Mao-Quan Wei
論文名稱:高靈敏度能源擷取器之研究
論文名稱(外文):High Sensitivity of Energy Harvester Research
指導教授:孫台平
指導教授(外文):Tai-Ping Sun
口試委員:林佑昇林智玲賴宇紳
口試日期:2012-01-08
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:89
中文關鍵詞:能源擷取器三維線圈人體運動
外文關鍵詞:Energy Harvester3D-CoilHuman Motion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究所提出的創新的Self-Alternation Magnetic-Flux (SAMF)和三維堆疊線圈結構(3D-coils)的設計具有重現性、元件尺寸微縮的可能性及寬頻偵測震盪頻率之高靈敏度的能源採擷器(Energy Harvester)。創新的SAMF結構可使振動擷取器擁有高靈敏度與較寬的操作頻率1Hz〜1kHz與非常短暫的暫態時間 < 0.25μsec;同時也證明我們所提出的三微堆疊線圈結構於1Hz外加震動訊號的條件下,元件輸出電壓量2~9.08(mv/coil)比先前的發表輸出電壓量(~1mV/coil)來的高,證明可在固定元件面積下來達到提升元件的輸出電壓量。因此,所設計之能源擷取器有潛力擁有較多的應用層面例如人體走動、汽車行駛間的晃動等等。
In this study, we report a reproducible, highly scalable, and highly sensitive broadband 1Hz~1kHz vibrated energy harvester with innovated self-alternation magnetic-flux (SAMF) and 3D-coils designs. High sensitivity of 2~6 mV/coil at very wide frequency range of 1Hz ~ 1kHz than previous reports (~1 mV/coil), small magnet volume of 132 mm3, and the very fast transient time of < 0.25 sec are achieved due to innovated SAMF. Meanwhile, we also demonstrated 3D-colis stack-ability for output voltage enhancement. This vibrated energy harvester thus offers high potential for several kinds of applications, such as human motion, automotive etc..
誌謝 II
論文摘要 III
Abstract IV
目錄 V
圖目錄 IX
表目錄 XII
第1章 前言 1
1.1 研究背景與動機 2
1.2 論文組織 3
第2章 文獻回顧 4
2.1 能源擷取器介紹 4
2.2 壓電式能源擷取器 5
2.2.1 壓電材料的發現 5
2.2.2 壓電材料的性質 5
2.2.3 壓電材料的發電原理 6
2.2.4 壓電材料的應用 7
2.3 熱流式能源擷取器 8
2.3.1熱電的發現 8
2.3.2熱電材料 8
2.3.3熱發電的應用 9
2.4 電磁式能源擷取器 11
2.4.1磁生電的發現 11
2.4.2 磁性材料的性質 11
2.4.3 磁生電的發電原理 12
2.4.4 磁生電的應用 13
2.5 能源擷取器目前的挑戰 16
第3章 元件設計與量測系統 35
3.1 電磁式微型發電機設計 35
3.1.1元件的設計目的 35
3.1.2 元件結構與選材 35
3.1.3 元件工作原理 36
3.1.4 元件設計方法 36
3.2 元件結構設計(初版元件) 37
3.2.1 初版金屬線圈製作 37
3.2.1-1 元件設計參數 38
3.2.2 順逆型(代號:FB)金屬線圈結構 39
3.2.3 不同金屬線圈週期結構設計 39
3.2.4 金屬線圈週模組接模式設計 40
3.3 元件結構設計(第二版元件) 41
3.3.1 第二版金屬線圈製作 41
3.3.2 順順型(代號:FF)及順逆型(代號:FB)金屬線圈結構 43
3.3.3 不同金屬線圈週期結構設計 43
3.3.3-1 金屬線圈模組接線模式 43
3.4 量測儀器介紹與量測系統架設 44
3.4.1 MEMS Motion Analyzer(MMA) 44
3.4.2 共平面位移式壓電宰台(PZT)壓電載台 45
3.4.3 加速規(MMA7361) 45
3.4.4 量測系統架設 45
3.4.4-1 元件諧振頻率與位移的量測系統 45
3.4.4-2 電性量測系統架設 45
3.4.4-3 外加不同阻抗的電性量測方式 46
3.4.4-4 不同外加力的電性量測方式 46
第4章 實驗結果與討論 58
4.1 實驗流程設計 58
4.2 實驗結果與討論 59
4.2.1 初版元件實驗結果 59
4.2.1-1 順逆型金屬(代號:FB) 59
4.2.1-2 順逆型線圈於不同金屬線圈結構週期比較 59
4.2.2 元件結構設計(第二版) 61
4.2.2-1 順逆型(代號:FB)與順順型(FF)的金屬線圈週期結構 61
4.3 輸出功率比較 64
4.3.1 元件結構設計(初版元件) 64
4.3.1-1 順逆型線圈(FB) 64
4.3.2 元件結構設計(第二版元件) 64
4.3.2-1 順逆型(FB)與順順型(FF)的金屬線圈結構 64
4.4 不同的外加力輸出電壓比較 66
4.4.1 元件結構設計(初版元件) 66
4.4.1-1 順逆型線圈(代號:FB)比較 66
4.4.1-2 順逆型金屬(代號:FB)於不同金屬線圈週期結構 66
4.4.2 元件結構設計(第二版元件) 67
4.4.2-1 順逆型(FB)與順順型(FF)金屬線圈結構 67
第5章 總結與未來展望 82
5.1 總結 82
5.2 未來計畫 83
參考文獻 84

[1]J. Zhao, A. Wang, P. Campbell, and M. A. Green, “A 19.8% efficient honeycomb multicrystalline silicon solar cell with improved light trapping,” IEEE Transactions on Electron Devices, Vol. 46, No 10, pp. 1978-1983, 1999.
[2]A. Rohatgi, S. Narasimha, S. Kamra, P. Doshi, C. P. Khattak, K. Emery, and H. Field, “Record high 18.6% efficient solar cell on HEM multicrystalline material,” IEEE Photovoltaic Specialist, pp. 741-744, 1996.
[3]J. J. H. Paulides, and J. W. Jansen, L. Encica, “Human-powered small-scale generation System for a sustainable dance club,” Electric Machines and Drives, pp 439-444, 2009.
[4]B. J. Bowers, and D. P. Arnold, “Spherical, rolling magnet generators for passive energy harvesting from human motion,” Journal of Microelectromechanics and Microengineering, pp. 094008-094014, 2009.
[5]J. Doke, J. M. Donelan, and A. D. Kuo, “Mechanics and energetics of swinging the human leg,” Journal of Experimental Biology, pp. 439-445, 2004.
[6]N. S. Shenck, and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE MICRO, pp. 30-41, 2001.
[7]J. J. Bernstein, S. L. Finberg, K .Houston, L. C. Niles, H. D. Chen, L. E. Cross, K. K. Li, and K. Udayakumar, “Micromachined high frequency frroelectric sonar transducers, ultrasonics, ferroelectrics and frequency control,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, pp. 960-969, 1997.
[8]D. L. DeVoe, and A. P. Pisano, “Surface micromaxhined piezoelectric accelerometers (PiXLs),” Journal of Microelectromechanical Systems, pp. 180-186, 2001.
[9]S. S. Lee, R. P. Ried, and R. M. White, “Piezoelectric cantilever microphone and microspeaker, microelectromechanical system,” Journal of Microelectromechanical Systems, pp. 238-242, 1996.
[10]R. P. Ried, “Piezoelectric microphone with on-chip CMOS circuits microspeaker microelectromechanical system,” Journal of Microelectromechanical Systems, pp. 111-120, 1993.
[11]林蕙君、舒貽忠 “壓電振能擷取簡介”力學學會專題文章, pp. 3-8
[12]Y. Qin, X. Wang, and Z. L. Wang, “Microfiber nanowire hybrid Structure for energy scanvenging,” Nature, pp. 809-814, 2008.
[13]R. Elfrink, M. Renaud, T. M. Kamel, C. de. Nooijer, M. Jambunathan, M. Goedbloed, D. Hohlfeld, S. Matova, V. Pop, L. Caballero, and R. van. Schaijk, “Vacuum packaged piezoelectric vibration vnergy harvesters damping contributions and autonomy for a wireless sensor system,” Journal of Micromechanics and Microengineering, pp. 104001-104008, 2010.
[14]Q. Yi, and C. M. Michael, “Nanotechnology-enabled flexible and biocompatible energy harvesting,” Energy & Environmental ScienceEnergy, pp. 1275-1285, 2010.
[15]G. S. Nolas, J. W. Sharp, and H. J. Goldsmid, “Thermoelectrics basics principles and new materials developments,” Springer-Verlag,Berlin Germany, 2001.
[16]http://e-info.org.tw/files/active/54/20070404-132028-20070330_solartower.jpg
[17]O. G. Symko, “Energy conversion using thermoacoustic devices,” The 18th International Conference on Therrnoelectrics, pp. 654-648, 1999.
[18]O. G. Symko, E. Abdel-Rahman, Y. S. Kwon, M. Emmi, and R. Behunin, “Desing and development of high-frequency thermoacustic engines for thermal management in microelectronics,” Journal of Microelectronics, pp. 185-191, 2004.
[19]O. G. Symko, “Acoustic approach to thermal management miniature thermo acoustic engines,” The 10th International Conference on Thermal and Thermoelectrics, Baltimore Phenomena in Electronics System, pp. 771-776, 2006.
[20]P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T.C. Green, “Energy harvesting from human and machine motion for wireless electronic devices”, Proceedings of the IEEE, pp. 1457-1486, 2008.
[21]C. B. Williams, and R. B. Yates, “Analysis of a micro-electric generator for microsystems,” Sensors and Actuators , pp. 8-11, 1996.
[22]C. R. Saha, T. O’Donnell, L. Heiko, S. P. Beeby, and T. John, “Optimization of an electromagnetic energy harvesting device,” IEEE Transactions on Magnetics, pp. 3509-3511, 2006.
[23]C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T. S. Birch, and R.B.Yates, “Development of an electromagnetic micro-generator,” IEEE Proceedings Circuits Devices & Systems , pp. 337-342, 2001.
[24]W. J. Li, T. C. Ho, G. M. H. Chan, P. H. W. Leong, and H. Y. Wong, “Infrared signal transmission by a laser-micromachined vibration-induced power generator,” IEEE Midwest Symposium on Circuits and Systems, pp. 236-239, 2000.
[25]S. P. Beeby, M. J. Tudor, E. Koukharenko, N. M. White, T. O,Donnell, C. Saha, S. Kulkarni, and S. Roy, “Micromachined silicon generator for harvesting power from vibrations,” Sensors and Actuators, pp. 171-176, 2004.
[26]S. Kulkarni, R. Saibal, T. O’Donnell S. P. Beeby, and M. J. Tudor, “Vibration based electromagnetic micropower generator on silicon,” Journal of Applied Physics, pp. 08P511-08P511-3, 2006.
[27]R. N. Torah, S. P. Beeby, M. J. Tudor, T. O’Donnell, and S. Roy, “Development of a cantilever beam generator employing vibration energy harvesting,” Power MEMS, PP. 181-184, 2006.
[28]R. N. Torah, P. G. Jones, M. J. Tudor, T. O’Donnell, S. Roy, and S. P. Beeby, “Self-powered autonomous wireless sensor node using vibration energy harvesting,” Measurement Science & Technology, pp. 125202-125209, 2008.
[29]R. N. Torah, S. P. Beeby, M. J. Tudor, T. O’Donnell, and S. Roy, “Development of cantilever beam generator employing vibration energy harvesting,” Power MEMS, pp. 181-184, 2006.
[30]S. P. Beeby, R. N. Torah, M. J. Tudor, P. G. Jones, T. O’Donnell, C. R. Saha, and S Roy, “A micro electromagnetic generator for vibration energy harvesting,” Journal of Micromechanics and Microengineering, pp. 1257-1265, 2007.
[31]J. M. H. Lee, S. C. L. Yuen, W. J. Li, and P. H. W. Leong, “Development of an AA size energy transducer with micro resonators,” Circuits and Systems, ISCAS '03, pp. 876-879, 2003.
[32]R. Amirtharajah, and A. P. Chandrakasan, “Self-powered signal processing using vibration-based power generation,” IEEE Journa of Solid State Circutts, pp. 687-695, 1998.
[33]C. R. Lawrence, F. Louis, M. G Evan, and D. Y. Taeseung, “Generating electricity while walking with loads,” Science, pp. 1275-1278, 2005.
[34]V. R. Challa, M. G. Prasad, Y. Shi, and F. T. Fisher, “A vibration energy harvesting device with bidirectional resonance frequency tunability,” Smart Mater. Struct, pp. 015035-015046, 2008.
[35]X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu, “A frequency adjustable vibration energy harvester,” Power MEMS, pp. 245-248, 2008
[36]E. S. Leland, and P. K. Wright, “Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload,” Smart Mater Struct, pp. 1413-1420, 2006.
[37]X. Wu, A. Khaligh, and Y. Xu, “Modeling, design and optimization of hybrid eectromagnetic and piezoelectric MEMS energy scavengers,” Custom Intergr. Circuits Conf. (CICC), pp. 177-180, 2008.
[38]J. Huang, R. C. O’Handley, and D. Bono, “New, high Sensitivity hybrid magnetostrictive electroactive magnetic field sensors,” Proceedings of SPIE Vol. 5050, pp. 229-237, 2003.
[39]D. D. Kraemer, B. Poudel, H. P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G.. Chen, “High-performance fat-panel solar thermoelectric generators with high thermal concentration,” Nature Materials, pp. 532-538, 2011.
[40]http://laoyaoba.com/ss6/html/79/n-168479.html
[41]T. Wacharasindhu, and J. W. K. Won, “A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion,” Journal of Microelectromechanics and Microengineering, pp. 094008-094024, 2008.
[42]V. R. Challa, M. G. Prasad, and F. T. Fisher, “A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching,” Journal of Microelectromechanics and Microengineering, pp. 095029-095040, 2009.
[43]B. Y. Chengkuo. L. W. L. Kee, and S. P. Lim, “Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms,” J. Micro/Nanolith, pp. 023002-1-023002-10, 2010.
[44]B. Andrey, P. R. William, and Z. Babak, “Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites,” Sensors & Actuators A-Physical, pp. 244-249, 2004.
[45]C. T. Pan, and T. T. Wu, “Development of a rotary electromagnetic microgenerator,” Journal of Microelectromechanics and Microengineering, pp. 120-128, 2007.
[46]A. S. Holmes, G. Hong, and K. R. Pullen, “Axial-flux permanent magnet machines for micropower generation,” Journal of Microelectromechanical Systems, Vol. 14, pp. 54-62, 2005.
[47]H. Raisigel, O. Cugat, and J. Delamare, “Permanent magnet planar micro-generators,” Sensors and Actuators, pp. 438-444, 2006.
[48]B. Yang, C. Lee, W. Xiang, J. Xie, J. H. He, R. K. Kotlanka, S. P. Low, and H. Feng, “Electromagnetic energy harvesting from vibrations of multiple frequencies,” Journal of Microelectromechanics and Microengineering, pp. 035001-035009, 2009.
[49]I. Sari, T. Balkan, and H. Kulah, “An electromagnetic micro power generator for wideband environmental vibrations,” Sensors and Actuators, pp. 405-413, 2008.
[50]M.Makoto, and G. C. Derek, “Investigation of a resonance microgenerator,” Journal of Microelectromechanics and Microengineering, pp. 209-216, 2003.
[51]D Spreemann, Y Manoli, B Folkmer, and D Mintenbeck, “Non-resonant vibration conversion,” Journal of Microelectromechanics and Microengineering, pp. 169-173, 2006.
[52]S. Kulkarni, E. Koukharenko, J. Tudor, S. Beeby, T. O’Donnell, and S. Roy, “Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator,” Sensors and Actuators, pp. 336-342, 2008.
[53]E. Dallago, M. Marchesi, and G. Venchi, “Analytical model of a vibrating electromagnetic harvester considering nonlinear effects,” IEEE Transaction on Power Electronics, Vol 25, pp. 1989-1997, 2010.
[54]J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld, “Parasitic power harvesting in shoes,” International Symposium on Wearable Computers, pp. 132-139, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top