(3.238.98.214) 您好！臺灣時間：2021/05/08 11:39

### 詳目顯示:::

:

• 被引用:0
• 點閱:101
• 評分:
• 下載:2
• 書目收藏:0
 在最近這幾年，對於非線性而且致動不足系統的閉迴路穩定性以及性能設計受到很高的重視。基於這個理由，將對球與弧系統設計平衡控制器，因為球與弧系統是屬於非線性而且致動不足。球與弧系統是由一顆球還有一個有弧度的台車所組成，在這裡我們主要的控制目標是要驅動台車讓球能停在弧的頂端，而且還要達到讓台車回到原點。在遞迴步階控制器設計的過程中，直接對原始系統設計控制器是相當困難的。為了暸解跟分析球與弧系統的特性，一開始先介紹並且研究線性化系統。接下來根據設計線性控制器得到的資訊來設計遞迴步階控制器，可以成功地讓球停在弧的頂端而且台車可以回到原點。接下來，提出適應性控制器用來克服球與弧系統有受到干擾的情形。我們設計出來的適應性控制器可以達到控制目的，而且由模擬驗證得知當系統有未知的干擾時，有加適應性控制會有比較好的控制效果。最後，所提出的控制器應用在球與弧系統有很好的模擬結果。
 In the recent years, there has been major interest in designing controllers ofnonlinear and underactuated systems for the closed-loop stability and performance.Motivated by these facts, this thesis is going to design the balancing controller for the balland arc system because this system is both nonlinear and underactuated. The systemconsists of a ball and a cart with the arc. The main control objective here is not only todrive the cart to bring the ball to stay on the top of the arc, but also to let the cart return toits origin.In the procedure of nonlinear backstepping design, the direct control design of thisnonlinear system is quite difficult. In order to realize and analyze the properties of the balland arc system, the linearized system model is introduced and investigated in the beginning.Then, according to the information we have obtained from designing the linearized system,the backstepping design scheme can be successfully developed for the nonlinear system tobring the ball to stay on the top of the arc and let the cart return to the origin. In addition,an adaptive backstepping design method is proposed to deal with the disturbance for thecontrol of this ball and arc system. Our proposed nonlinear and adaptive controllers canachieve the control objectives and the resulting closed-loop system with proposed adaptivebackstepping controller can have better performance than the system without adaptation.Finally, some simulation results are given to illustrate the excellent performance of theproposed controllers applied to the ball and arc system.
 Abstract iContents iiList of Tables ivList of Figures v1 Introduction 12 System Model and Dynamics 42.1 Ball and Arc System . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Nonlinear Backstepping Design 103.1 Linearized System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.2 Nonlinear Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 173.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Adaptive Control Design 274.1 Adaptive Backstepping Control . . . . . . . . . . . . . . . . . . . . . 284.2 Comparative Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 324.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 Conclusions and Future Works 37Appendix A 41Bibliography 44
 [1] M.W. Spong, “Partial feedback linearization of underactuated mechanical systems,”Proceedings of the IEEE International Conference on Intelligent Robotsand Systems, vol. 1, pp. 314-321, 1994.[2] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding mode controllerfor a class of second-order underactuated systems,” IET Control Theory andApplications, vol. 151, no. 6, pp. 683-690, 2004.[3] D. Qian, J. Yi and D. Zhao, “Robust control using sliding mode for a class ofunderactuated systems with mismatched uncertainties,” Proceedings of the IEEEAmerican Control Conference, pp. 5254-5259, 2007.[4] R. Gurumoorthy and S.R. Sanders, “Controlling nonminimum phase nonlinearsystems-the inverted pendulum on a cart example,” Proceedings of the IEEEAmerican Control Conference, pp. 680-685, 1993.[5] Q. Yan, “Output tracking of underactuated rotary inverted pendulum by nonlinearcontroller,” Proceedings of the 42nd IEEE Conference on Decision andControl, vol. 3, pp. 2395-2400, 2003.[6] R. Fierro, F.L. Lewis and A. Lowe, “Hybrid control for a class of underactuatedmechanical systems,” IEEE Transactions on Systems, Man and Cybernetics, vol.29, pp. 649-654, 1999.44[7] J. Yi, W. Wang, D. Zhao and X. liu, “Cascade sliding-mode controller for largescaleunderactuated systems,” Proceedings of the IEEE/RSJ International Conferenceon Intelligent Robots and Systems, pp. 301-306, 2005.[8] R.M. Hirschorn, “Incremental sliding mode control of the ball and beam,” IEEETransactions on Automatic Control, vol. 47, no. 10, pp. 1696-1700, October,2002.[9] D. Qian, J. Yi, D. Zhao and Y. Hao, “Hierarchical sliding mode control for seriesdouble inverted pendulums system,” Proceedings of the IEEE/RSJ InternationalConference on Intelligent Robots and Systems, pp. 4977-4982, October, 2006.[10] D. Qian, J. Yi and D. Zhao, “Hierarchical sliding mode control to swing up apendubot,” Proceedings of the IEEE American Control Conference, pp. 5254-5259, July, 2007.[11] S.B. Choi, Y.T. Choi and D.W. Park, “A sliding mode control of a full-carelectrorheological suspension system via hardwar in-the-loop simulation,” InternationalJournal of Vehicle Design, vol. 122, pp. 114-121, March, 2000.[12] J.M. Avis, S.G. Nersesov and R. Nathan, “Energy-based hybrid control for theRTAC system: experimental results,” Proceedings of the IEEE American ControlConference, pp. 3331-3336, June, 2008.[13] X. Xin and M. Kaneda, “Analysis of the energy-based control for swinging uptwo pendulums,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp.679-684, 2005.[14] J. Yi, N. Yubazaki and K. Hirota, “A new fuzzy controller for stabilization ofparallel-type double inverted pendulum system,” ELSEVIER Fuzzy Sets andSystems, vol. 126, pp. 105-119, 2002.45[15] K. Fujita and M. Mizumoto, “Fuzzy controls of parallel inverted pendulum underfuzzy singleton-type reasoning method using genetic algorithm,” Proceedings ofthe 11th Fuzzy System Symposium, pp. 379-382, 1995.[16] Y.-C. Fu and J.-S. Lin, “Nonlinear backstepping control design of the Furutapendulum,” Proceedings of the IEEE Conference on Control Applications, pp.96-101, 2005.[17] W.-S. Man and J.-S. Lin, “Nonlinear control design for a class of underactuatedsystems,” Proceedings of the 2010 IEEE International Conference on ControlApplications, Part of 2010 IEEE Multi-Conference on Systems and Control, pp.1439-1444, September, 2010.[18] J.-W. Huang and J.-S. Lin, “Backstepping control design of a single-link flexiblerobotic manipulator,” Preprints of the 17th World Congress of InternationalFederation of Automatic Control, pp. 11775-11780, July, 2008.[19] F.-S. Chen and J.-S. Lin, “Nonlinear backstepping design of robot manipulatorswith velocity estimation feedback,” Proceedings of the 5th Asian ControlConference, pp. 351-356, July, 2004.[20] F.-K. Tsai and J.-S. Lin, “Nonlinear control design for 360-degree inverted pendulumsystems,” Proceedings of the 4th International Conference on Control andAutomation, pp. 634-638, 2003.[21] K.C. Cheok and N.K. Loh, “A ball-balancing demonstration of optimal anddisturbance-accommodating control,” IEEE Control Systems Magazine, vol. 7,no. 1, pp. 54-57, 1987.46[22] K.C. Cheok and N.K. Loh, “A ball-balancing demonstration of distrubanceaccommodatingcontrol,” Proceedings of the IEEE American Control Conference,pp. 537-540, 1986.[23] J. Kostamo, H. Hyotyniemi and P. Kuosmanen, “Ball balancing system: an educationaldevice for demonstrating optimal control,” Proceedings of the IEEE InternationalSymposium on Computational Intelligence in Robotics and Automation,vol. 7, pp. 379-384, 2005.[24] M.-T. Ho, S.-T. Kao and Y.-S. Lu, “Sliding mode control for a ball and arcsystem,” Proceedings of the SICE Annual Conference, pp. 791, August, 2010.[25] H.K. Khalil, Nonlinear Systems, Prentice Hall, 1996.[26] M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive ControlDesign, Wiley-Interscience Publication, 1995.[27] K.J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley PublishingCompany, 1995.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 兩輪倒單擺系統的平衡與軌跡追蹤控制 2 斜面式倒單擺系統的非線性與適應性控制設計 3 滑車與翹翹板系統的非線性控制設計 4 撓性關節機械手臂系統之非線性遞迴步階控制設計 5 TORA系統的非線性與適應控制設計 6 利用非線性與適應遞迴步階設計之感應馬達速度追蹤控制

 1 楊家祥、陳俊傑 (2006) 阻塞型睡眠呼吸中止症候群的診斷與治療。基層醫學 21 : 306-311 2 孫嘉玲、林佳靜、蔡佩珊、周桂如 (2008) 失眠之概念分析。護理雜誌55：79-84 3 楊家祥、陳俊傑 (2006) 阻塞型睡眠呼吸中止症候群的診斷與治療。基層醫學 21 : 306-311 4 楊家祥、陳俊傑 (2006) 阻塞型睡眠呼吸中止症候群的診斷與治療。基層醫學 21 : 306-311 5 孫嘉玲、林佳靜、蔡佩珊、周桂如 (2008) 失眠之概念分析。護理雜誌55：79-84 6 孫嘉玲、林佳靜、蔡佩珊、周桂如 (2008) 失眠之概念分析。護理雜誌55：79-84

 1 半車防鎖死煞車系統結合主動式懸吊援助之非線性與適應控制設計 2 利用垂直與水平力在二維倒單擺的非線性與適應控制設計 3 促進地方文化特色之產品設計策略探討 4 住宅環境導向之最適化LED燈具設計策略之研究 5 小型企業產品設計策略：辦公家具個案研究 6 使用者導向之產品設計策略研究 7 精品化設計策略與執行面探討-以瀚斯寶麗為例 8 時域同步正交分頻多工通訊系統之改良式通道估測技術 9 正交分頻多工系統中利用新型切塊式選擇性映射策略來降低峰均值功率比之研究 10 輪型機器人之設計與實現：使用適應性步階迴歸小腦模型控制器 11 台灣USB隨身碟產業之設計策略探討 12 二重疏洪道因應氣候變遷之生態調適與設計策略 13 以本質較安全設計策略探討高科技製程設備人因工程改善之研究 14 多輸入多輸出正交分頻多工系統中利用選擇性映射與分部傳輸序列的混合式策略之降低峰均值功率比技術研究 15 基於模糊類神經網路之人體動作辨識

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室