(3.238.98.214) 您好!臺灣時間:2021/05/08 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:周駿廷
研究生(外文):Zhou, JunTing
論文名稱:應用遞迴式步階設計策略之球與弧系統的平衡控制
論文名稱(外文):Balancing Control of Ball and Arc Systems with Backstepping DesignSchemes
指導教授:林容杉
指導教授(外文):Lin, JungShan
口試委員:林嘉慶洪志偉
口試委員(外文):Lin, JiaChinHung, Jeihweih
口試日期:100年7月11日
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:47
中文關鍵詞:球與弧系統遞迴步階設計適應性遞迴步階設計
外文關鍵詞:Ball and Arc SystemBackstepping DesignAdaptive Backstepping Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在最近這幾年,對於非線性而且致動不足系統的閉迴路穩定性以及性
能設計受到很高的重視。基於這個理由,將對球與弧系統設計平衡控制
器,因為球與弧系統是屬於非線性而且致動不足。球與弧系統是由一顆
球還有一個有弧度的台車所組成,在這裡我們主要的控制目標是要驅動
台車讓球能停在弧的頂端,而且還要達到讓台車回到原點。
在遞迴步階控制器設計的過程中,直接對原始系統設計控制器是相當
困難的。為了暸解跟分析球與弧系統的特性,一開始先介紹並且研究線
性化系統。接下來根據設計線性控制器得到的資訊來設計遞迴步階控制
器,可以成功地讓球停在弧的頂端而且台車可以回到原點。接下來,提
出適應性控制器用來克服球與弧系統有受到干擾的情形。我們設計出來
的適應性控制器可以達到控制目的,而且由模擬驗證得知當系統有未知
的干擾時,有加適應性控制會有比較好的控制效果。最後,所提出的控
制器應用在球與弧系統有很好的模擬結果。
In the recent years, there has been major interest in designing controllers of
nonlinear and underactuated systems for the closed-loop stability and performance.
Motivated by these facts, this thesis is going to design the balancing controller for the ball
and arc system because this system is both nonlinear and underactuated. The system
consists of a ball and a cart with the arc. The main control objective here is not only to
drive the cart to bring the ball to stay on the top of the arc, but also to let the cart return to
its origin.
In the procedure of nonlinear backstepping design, the direct control design of this
nonlinear system is quite difficult. In order to realize and analyze the properties of the ball
and arc system, the linearized system model is introduced and investigated in the beginning.
Then, according to the information we have obtained from designing the linearized system,
the backstepping design scheme can be successfully developed for the nonlinear system to
bring the ball to stay on the top of the arc and let the cart return to the origin. In addition,
an adaptive backstepping design method is proposed to deal with the disturbance for the
control of this ball and arc system. Our proposed nonlinear and adaptive controllers can
achieve the control objectives and the resulting closed-loop system with proposed adaptive
backstepping controller can have better performance than the system without adaptation.
Finally, some simulation results are given to illustrate the excellent performance of the
proposed controllers applied to the ball and arc system.
Abstract i
Contents ii
List of Tables iv
List of Figures v
1 Introduction 1
2 System Model and Dynamics 4
2.1 Ball and Arc System . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Nonlinear Backstepping Design 10
3.1 Linearized System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Nonlinear Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Adaptive Control Design 27
4.1 Adaptive Backstepping Control . . . . . . . . . . . . . . . . . . . . . 28
4.2 Comparative Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Conclusions and Future Works 37
Appendix A 41
Bibliography 44
[1] M.W. Spong, “Partial feedback linearization of underactuated mechanical systems,”
Proceedings of the IEEE International Conference on Intelligent Robots
and Systems, vol. 1, pp. 314-321, 1994.
[2] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding mode controller
for a class of second-order underactuated systems,” IET Control Theory and
Applications, vol. 151, no. 6, pp. 683-690, 2004.
[3] D. Qian, J. Yi and D. Zhao, “Robust control using sliding mode for a class of
underactuated systems with mismatched uncertainties,” Proceedings of the IEEE
American Control Conference, pp. 5254-5259, 2007.
[4] R. Gurumoorthy and S.R. Sanders, “Controlling nonminimum phase nonlinear
systems-the inverted pendulum on a cart example,” Proceedings of the IEEE
American Control Conference, pp. 680-685, 1993.
[5] Q. Yan, “Output tracking of underactuated rotary inverted pendulum by nonlinear
controller,” Proceedings of the 42nd IEEE Conference on Decision and
Control, vol. 3, pp. 2395-2400, 2003.
[6] R. Fierro, F.L. Lewis and A. Lowe, “Hybrid control for a class of underactuated
mechanical systems,” IEEE Transactions on Systems, Man and Cybernetics, vol.
29, pp. 649-654, 1999.
44
[7] J. Yi, W. Wang, D. Zhao and X. liu, “Cascade sliding-mode controller for largescale
underactuated systems,” Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 301-306, 2005.
[8] R.M. Hirschorn, “Incremental sliding mode control of the ball and beam,” IEEE
Transactions on Automatic Control, vol. 47, no. 10, pp. 1696-1700, October,
2002.
[9] D. Qian, J. Yi, D. Zhao and Y. Hao, “Hierarchical sliding mode control for series
double inverted pendulums system,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4977-4982, October, 2006.
[10] D. Qian, J. Yi and D. Zhao, “Hierarchical sliding mode control to swing up a
pendubot,” Proceedings of the IEEE American Control Conference, pp. 5254-
5259, July, 2007.
[11] S.B. Choi, Y.T. Choi and D.W. Park, “A sliding mode control of a full-car
electrorheological suspension system via hardwar in-the-loop simulation,” International
Journal of Vehicle Design, vol. 122, pp. 114-121, March, 2000.
[12] J.M. Avis, S.G. Nersesov and R. Nathan, “Energy-based hybrid control for the
RTAC system: experimental results,” Proceedings of the IEEE American Control
Conference, pp. 3331-3336, June, 2008.
[13] X. Xin and M. Kaneda, “Analysis of the energy-based control for swinging up
two pendulums,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp.
679-684, 2005.
[14] J. Yi, N. Yubazaki and K. Hirota, “A new fuzzy controller for stabilization of
parallel-type double inverted pendulum system,” ELSEVIER Fuzzy Sets and
Systems, vol. 126, pp. 105-119, 2002.
45
[15] K. Fujita and M. Mizumoto, “Fuzzy controls of parallel inverted pendulum under
fuzzy singleton-type reasoning method using genetic algorithm,” Proceedings of
the 11th Fuzzy System Symposium, pp. 379-382, 1995.
[16] Y.-C. Fu and J.-S. Lin, “Nonlinear backstepping control design of the Furuta
pendulum,” Proceedings of the IEEE Conference on Control Applications, pp.
96-101, 2005.
[17] W.-S. Man and J.-S. Lin, “Nonlinear control design for a class of underactuated
systems,” Proceedings of the 2010 IEEE International Conference on Control
Applications, Part of 2010 IEEE Multi-Conference on Systems and Control, pp.
1439-1444, September, 2010.
[18] J.-W. Huang and J.-S. Lin, “Backstepping control design of a single-link flexible
robotic manipulator,” Preprints of the 17th World Congress of International
Federation of Automatic Control, pp. 11775-11780, July, 2008.
[19] F.-S. Chen and J.-S. Lin, “Nonlinear backstepping design of robot manipulators
with velocity estimation feedback,” Proceedings of the 5th Asian Control
Conference, pp. 351-356, July, 2004.
[20] F.-K. Tsai and J.-S. Lin, “Nonlinear control design for 360-degree inverted pendulum
systems,” Proceedings of the 4th International Conference on Control and
Automation, pp. 634-638, 2003.
[21] K.C. Cheok and N.K. Loh, “A ball-balancing demonstration of optimal and
disturbance-accommodating control,” IEEE Control Systems Magazine, vol. 7,
no. 1, pp. 54-57, 1987.
46
[22] K.C. Cheok and N.K. Loh, “A ball-balancing demonstration of distrubanceaccommodating
control,” Proceedings of the IEEE American Control Conference,
pp. 537-540, 1986.
[23] J. Kostamo, H. Hyotyniemi and P. Kuosmanen, “Ball balancing system: an educational
device for demonstrating optimal control,” Proceedings of the IEEE International
Symposium on Computational Intelligence in Robotics and Automation,
vol. 7, pp. 379-384, 2005.
[24] M.-T. Ho, S.-T. Kao and Y.-S. Lu, “Sliding mode control for a ball and arc
system,” Proceedings of the SICE Annual Conference, pp. 791, August, 2010.
[25] H.K. Khalil, Nonlinear Systems, Prentice Hall, 1996.
[26] M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control
Design, Wiley-Interscience Publication, 1995.
[27] K.J. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley Publishing
Company, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔