(3.238.130.97) 您好!臺灣時間:2021/05/10 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:紀智豪
研究生(外文):Chih-Hao Chi
論文名稱:利用垂直與水平力在二維倒單擺的非線性與適應控制設計
論文名稱(外文):Nonlinear and Adaptive Control Design of 2-Dimensional Inverted Pendulum with Vertical and Horizontal Forces
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
口試委員:林嘉慶林容杉洪志偉
口試委員(外文):Jia-Chin LinJung-Shan LinJeih-Weih Hung
口試日期:2011-07-11
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:52
中文關鍵詞:二維倒單擺系統非線性系統適應性遞迴步階設計
外文關鍵詞:2-Dimensional Inverted Pendulum SystemNonlinear SystemAdaptive Backstepping Design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
倒單擺系統是個典型的控制試驗裝置,從機器人領域的廣泛應用到太空火箭的導引系統,都是為了驗證和實踐各種控制技術。我們介紹的倒單擺類型是能在水平和垂直平面移動的系統,此系統被廣泛的運用在火箭的控制與抗震建築物。此典型的控制試驗裝置,提供許多具有挑戰性的控制設計問題。我們將以非線性李亞普諾夫穩定準則為基礎的遞迴步階控制器設計應用於二維倒單擺系統。主要控制目標是不僅要保持單擺在直立位置,還要使台車達到我們所需的參考坐標。為了瞭解和分析二維倒單擺系統的特性,首先我們先把二維倒單擺系統線性化後再去設計其控制器。根據線性化系統控制的概念去設計這個非線性系統,並且成功的達成我們的控制目的。此外,適應性遞迴步階控制器可以對抗未知的外力干擾以及實現平衡及軌跡追蹤的目的。最後,為了驗證以上理論的推演,會有一些模擬結果來說明控制器在二維倒單擺系統上有很好的表現結果。
Inverted pendulum systems are classical control test rigs for verification and practice of various control techniques with wide areas of applications from robotics to space rocket guidance systems. In this thesis, the type of inverted pendulum systems moving in the horizontal and vertical plane is introduced and investigated. This system is highly motivated by applications such as the control of rockets and the antiseismic control of buildings. It is well established benchmark problem that provides many challenging issues to control design. The nonlinear Lyapunov-based controllers with backstepping design schemes are developed for the manipulation of the 2-dimensional inverted pendulum system. The main control objective is not only to maintain the pendulum at the upright position, but also to drive the cart to reach the desired reference coordinate.
In order to analyze and realize the system properties of the 2-dimensional
inverted pendulum system, in the beginning, the linear controllers are designed for the balancing control of the linearized 2-dimensional inverted pendulum system. According to the information from the linearized case, the nonlinear backstepping controllers can be successfully developed to achieve our control objectives for the original nonlinear system. In addition, an adaptive backstepping design scheme is proposed to cope with unknown disturbance for attaining both balancing and trajectory tracking purpose. Finally, some simulation results are given to illustrate the excellent performance of the proposed controllers applied to a 2-dimensional inverted pendulum system.
Abstract i
Contents ii
List of Tables iii
List of Figures iv
1 Introduction 1
2 System Model and Dynamics 5
2.1 2-dimensional Inverted Pendulum System . . . . . . . . . . . . . . . . 5
2.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Nonlinear Backstepping Design 10
3.1 Linearized System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Nonlinear Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Adaptive Backstepping Control 31
4.1 Adaptive Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Conclusions and Future Works 43
Appendix A 46
Bibliography 49
[1] D. Maravall, “Control and stabilization of the inverted pendulum via vertical
forces,” Springer Lecture Notes in Control and Information Sciences, vol. 299,
pp. 190-211, 2004.
[2] J.-J. Wang, “Simulation of studies inverted pendulum based on PID controller,”
ELSEVIER Simulation Modelling Practice and Theory, vol. 19, pp. 440-449,
2011.
[3] F.-K. Tsai and J.-S. Lin, “Nonlinear control design of 360-degree inverted pendulum
system,” Proceedings of the International Conference on Control and
Automation, pp. 634-638, 2003.
[4] Y.-C. Fu and J.-S. Lin, “Nonlinear backstepping control design of the furuta
pendulum,” Proceedings of the IEEE International Conference on Control Applications,
pp. 96-101, 2005.
[5] W.-S. Man and J.-S. Lin, “Nonlinear control design for a class of underactuated
systems,” Proceedings of the IEEE International Conference on Control
Applications, pp. 1439-1444, 2010.
[6] B. Sprenger, L. Kucera and S. Mourad, “Balancing of an inverted pendulum with
a SCARA robot,” IEEE/ASME Transactions on Mechatronics, vol. 3, no. 2, pp.
91-97, 1998.
[7] I. Fantoni and R. Lozano, Non-linear Control for Underactuated Mechanical
Systems, New York, NY: Springer, 2001.
[8] R. Olfati-Saber and A. Megretski, “Controller design for a class of underactuated
nonlinear systems,” Proceedings of the IEEE Conference on Decision and
Control, vol. 4, pp. 4182-4187, 1998.
[9] K. J. Astrom and K. Furuta, “Swinging up a pendulum by energy control,”
Preprints of the World Congress of International Federation of Automatic Control,
pp. 37-42, 1996.
[10] K. Yoshida, “Swing-up control of an inverted pendulum by energy-based methods,”
Proceedings of the IEEE American Control Conference, pp. 4045-4047,
1999.
[11] L.-H. Chang and A.-C. Lee, “Design of nonlinear controller for bi-axial inverted
pendulum system,” IET Control Theory and Applications, vol. 1, no. 4, pp.
979-986, 2007.
[12] L. E. Ramos, B. Castillo-Toledo, and S. Negretc, “Nonlinear regulation of a
seesaw inverted pendulum,” Proceedings of the IEEE International Conference
on Control Applications, vol. 2, pp. 1399-1403, 1998.
[13] W. Torres-Pomales and O. R. Gonzalez, “Nonlinear control of swing-up inverted
pendulum,” Proceedings of the IEEE International Conference on Control Applications,
pp. 259-264, 1996.
[14] R. Yang, Y. Kuen and Z. Li, “Stabilization of a 2-DOF spherical pendulum
on X-Y table,” Proceedings of the IEEE International Conference on Control
Applications, pp. 724-729, 2000.
[15] H.-P. Wang, C. Vasseur, A. Chamroo and V. Koncar, “Stabilization of a 2-DOF
inverted pendulum by a low cost visual feedback,” Proceedings of the IEEE on
American Control Conference, pp. 3851-3856, 2008.
[16] H. Hemami, F. C. Weimer and S. H. Kwzekanani, “Some aspects of the inverted
pendulum problem for modeling of locomotion systems,” IEEE Transactions on
Automatic Control, vol. 18, pp. 658-661, 1973.
[17] R. Lozano and I. Fantoni, “Stabilization of the inverted pendulum around its
homoclinic orbit,” Systems and Control Letters, vol. 40, pp. 197-204, 2000.
[18] F. Grasser, A. D’Arrigo, S. Colombi and A. C. Rufer, “JOE: A mobile inverted
pendulum,” IEEE Transactions on Industrial Electronics, vol. 49, pp. 107-114,
2002.
[19] M. W. Spong, “Partial feedback linearization of underactuared mechanical systems,”
Proceedings of the IEEE International Conference on Intelligent Robots
and Systems, vol. 1, pp. 314-321, 1994.
[20] X. Zhang, B. Gao and H. Chen, “Nonlinear controller for a gantry crane based
on partial feedback linearization,” Proceedings of the IEEE International Conference
on Control and Automation, vol. 2, pp. 1074-1078, 2005.
[21] R.-J. Wai and L.-J. Chang, “Adaptive stabilizing and tracking control for a
nonlinear inverted-pendulum system via sliding-mode technique,” IEEE Transactions
on Industrial Electronics, vol. 53, no. 2, pp. 674-692, 2006.
[22] C.-S. Chen and W.-L. Chen, “Robust adaptive sliding-mode control using fuzzy
modeling for an inverted pendulum System,” IEEE Transactions on Industrial
Electronics, vol. 45, no. 2, pp. 297-306, 1998.
[23] A. Ebrabim and G. V. Murphy, “Adaptive backstepping controller design of
an inverted pendulum,” Proceedings of the Southeatern Symposium on System
Theory, pp. 172-174, 2005.
[24] A. Benaskeur and A. Debiens, “Application of adaptive backstepping to the stabilization
of the inverted pendulum,” Proceedings of the IEEE Canadian Conference
on Electrical and Computer Engineering, vol. 1, pp. 113-116, 1998.
[25] R.-J. Wai and L.-J. Chang, “Stabilizing and tracking control of nonlinear dualaxis
inverted-pendulum system using fuzzy neural network,” IEEE Transactions
on Fuzzy Systems, vol. 14, no. 1, pp. 145-168, 2006.
[26] M. I. H. Nour, J. Ooi and K.-Y. Chan, “Fuzzy logic control vs. conventional PID
control of an inverted pendulum robot,” Proceedings of the ICIAS International
Conference on Intelligent and Advanced Systems, pp. 209-214, 2007.
[27] C.-J. Huang and J.-S. Lin, “Nonlinear active suspension design applied to a
half-car model,” Vehicle System Dynamics, vol. 42, no. 6, pp. 373-393, 2004.
[28] W.-E. Ting and J.-S. Lin, “ Nonlinear control design of anti-lock braking systems
with assistance of active suspension,” IET Control Theory and Applications, vol.
1, no. 1, pp. 343-348, 2007.
[29] B.-Y. Fu and J.-S. Lin, “Adaptive position tracking control for permanent magnet
synchronous motors,” Proceedings of the CACS International Conference
Automatic Control, pp. 117-118, 2008.
[30] H. K. Khalil, Nonlinear Systems, 3rd ed., Upper Saddle River, NJ: Prentice-Hall,
2002.
[31] M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control
Design, New York, NY: John Wiley and Sons, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔