跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/06 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊宇
研究生(外文):Chen, Jun-Yu
論文名稱:奈米多通道有機薄膜電晶體之研究
論文名稱(外文):The Study of Organic Thin Film Transistors with Multiple Nano Channels
指導教授:陳建亨陳建亨引用關係
指導教授(外文):Chen, Jiann-Heng
口試委員:岑尚仁王右武
口試委員(外文):Chen, Sun-ZenWang, Yu-Wu
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:136
中文關鍵詞:奈米壓印五環素自組裝單分子層
外文關鍵詞:nano imprintpentaceneself-assemble monolayers(SAMs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究奈米壓印製作奈米多通道有機薄膜電晶體(OTFTs),研究有機修
飾層對OTFT 性能的影響,並評估利用奈米多通道做為對準層來控制pentacene
分子成長的優先取向之可行性。
首先探討無機介電層(SiO2)與各種有機修飾層表面特性對元件電特性的影
響,接著探討奈米多通道結構對OTFT 元件特性之影響,在有機修飾層
(PAK-01-200)上形成奈米多通道,並沉積pentacene 於具有奈米多通道的修飾層
上,最後分析奈米多通道對OTFT 載子傳輸的影響。另外,並藉由奈米壓印以
及蝕刻方式製備奈米多通道鋁電極,最後使用SEM 與AFM 觀察pentacene 之
表面結構,以了解奈米通道結構對pentacene 薄膜成長之影響。
實驗結果顯示,我們成功的製作出各種線寬/間距的奈米多通道,此外,具
有OTS-C18 修飾層的元件相較於其它修飾層元件有較佳的元件特性,包括超過
0.38cm2/Vs 的載子遷移率以及電流開關比大於107。而在奈米多通道方面,線寬
間距為1:2 的通道結構其電性優於單通道,其中以800 nm/1600 nm 這組最佳,
包括超過0.013cm2/Vs 的載子遷移率以及電流開關比大於104。
In this thesis, the chanacteristics of organic thin film transistors(OTFTs) with
surface modification layers and multiple nano channels were studied.
First, the electrical characteristics of pentacene OTFTs on inorganic
dielectrics(SiO2) and organic modification layers were studied. Then, The nano
structures were fabricated on organic modification layers(PAK-01-200) by nono
imprint technology. Following, pentacene was deposited on modified nano channel
and the electrical character of OTFTs were studied. Beside, the aluminum gate were
fabricated with the nano-multiple channels by nano-imprint and reactive ion
etching(RIE). Finally, the channels of pentacene structure was investigated by
scanning electron microscope(SEM) and atomic force microscopy (AFM).
As the result, the nano channels with the various line width/space were
fabricated successfully. The OTFTs with modification layer of OTS-C18 exhibited
excellent electrical characteristics, including high mobility of above 0.38 cm2/Vs,
on/off ratio above 107. Beside, the modification layer of PAK-01-200 with line/space
width of 1:2 exhibited excellent electrical characteristics, including mobility of above
0.013 cm2/Vs, on/off ratio above 104.
誌謝................................................................................................................................i
中文摘要........................................................................................................................ii
英文摘要...................................................................................................................... iii
目錄...............................................................................................................................iv
圖目錄.......................................................................................................................vii
表目錄........................................................................................................................ xiii
第一章 序論.................................................................................................................1
1-1 前言................................................................................................................1
1-2 研究動機........................................................................................................2
1-3 論文架構........................................................................................................4
第二章 基礎理論與實驗材料......................................................................................5
2-1 有機薄膜電晶體(OTFT)介紹........................................................................5
2-1-1 高分子(Polymer)材料.........................................................................6
2-1-2 小分子(Small Molecular)材料…........................................................6
2-2 有機半導體傳輸機制….................................................................................7
2-2-1 Hopping model.....................................................................................7
2-2-2 Multiple trapping and release model....................................................8
2-3 有機薄膜電晶體特性公式….........................................................................8
2-3-1 定義臨界電壓(threshold voltage, VT)..............................................12
2-3-2 定義電流開關比(on/off current ratio)..............................................12
2-3-3 定義載子遷移率(mobility, μ)...........................................................12
2-3-4 次臨界擺幅萃取...............................................................................13
2-4 接觸角與表面能量計算...............................................................................13
2-4-1 接觸角定義…...................................................................................14
2-4-2 表面能之計算…...............................................................................14
2-5 自組裝單分子層(SAMs) .............................................................................15
2-6 實驗材料…...................................................................................................17
2-6-1 Pentacene............................................................................................17
2-6-2 HSQ…................................................................................................18
2-6-3 PAK-01-200........................................................................................20
2-6-4 1H,1H,2H,2H-Perfluorooctyltrichlorosilane(F13-TCS)......................21
2-6-5 N-octadecyltrichlorosilane(OTS-C18).................................................22
第三章 實驗流程與製作方法....................................................................................24
3-1 SiO2介電層與有機修飾層基本特性分析....................................................24
3-1-1 表面分析.............................................................................................24
3-1-2 PAK-01-200 介電之介電係數量測...............................................25
3-2 奈米壓印模具的製備…...............................................................................26
3-2-1 HSQ 模具設計與製作........................................................................26
3-2-2 脫膜劑(F13-TCS)的使用.....................................................................33
3-3 UV 奈米壓印.................................................................................................34
3-4 各種有機修飾層元件製作...........................................................................35
3-5 奈米多通道修飾層元件製作........................................................................36
3-5-1 PVD 蒸鍍有機半導體pentacene 與金屬電極...................................38
3-6 電性量測........................................................................................................38
第四章 實驗結果與討論…........................................................................................39
4-1 SiO2 介電層與有機高分子修飾層基本特性分析........................................39
4-1-1 表面分析….........................................................................................39
4-1-2 PAK-01-200 介電層特性分析...........................................................42
4-2 奈米壓印模具的製作...................................................................................44
4-3 UV 奈米壓印結果分析.................................................................................59
4-4 各種有機修飾層元件特性分析....................................................................63
4-5 奈米多通道元件特性分析............................................................................67
4-5-1 奈米多通道元件電性分析................................................................80
4-5-1-1 單通道與多通道之電性比較.................................................82
4-5-1-2 不同奈米多通道方向之電性比較.........................................82
4-5-1-3 不同稀釋比例PAK-01-200 元件之電性比較.......................83
第五章 結論..............................................................................................................117
參考文獻..............................................................................................................118
附錄......................................................................................................................123
附錄1 鋁奈米多通道元件之實驗流程與製作方法...............................123
1-1 UV 奈米壓印...............................................................................124
1-2 殘留層蝕刻..................................................................................125
1-3 金屬鋁蝕刻實驗..........................................................................126
附錄2 鋁奈米多通道元件之實驗結果與討論…...................................127
2-1 UV 奈米壓印...............................................................................127
2-2 光阻殘留層去除..........................................................................129
2-3 金屬鋁奈米多通道蝕刻實驗.....................................................131
圖目錄
圖1-1 各種有機材料載子遷移率的演進......................................................................2
圖2-1 OTFT 元件結構...................................................................................................5
圖2-2 常見的高分子有機半導體材料..........................................................................6
圖2-3 常見的小分子有機半導體材料..........................................................................6
圖2-4 Charge Hopping...................................................................................................7
圖2-5 理想p 型半導體MOS 場效電晶體的能帶圖...................................................9
圖2-6 不同金屬電極電壓與能帶之關係....................................................................10
圖2-7 有機薄膜電晶體操作示意圖............................................................................11
圖2-8 接觸角與物質界面之關係................................................................................14
圖2-9 (a) 有機矽化物聚集在含有氫氧基的表面上;(b) 烷基硫醇聚集在金屬上;
(c) 脂肪酸在金屬氧化物表面;(d) 醇、胺類在白金表面。...........................16
圖2-10 pentacene 的分子晶格結構(side view)...........................................................18
圖2-11 HSQ 結構圖...................................................................................................19
圖2-12 HSQ 經過E-beam 曝光後之反應式............................................................19
圖2-13 HSQ 經過不同e-beam 劑量後的FTIR 頻譜圖..........................................20
圖2-14 cage-like HSQ 溶解於TMAH 之反應式.....................................................20
圖2-15 PAK-01 於UV 曝光後的轉換反應................................................................21
圖2-16 1H,1H,2H,2H-Perfluorooctyltrichlorosilane(F13-TCS)化學式結構...............21
圖2-17 N-octadecyltrichlorosilane(OTS-C18)化學式結構..........................................23
圖2-18 矽烷類分子修飾矽表面之示意圖..................................................................23
圖3-1 PAK-01-200 介電層分析結構(a) PAK-01-200、(b) PAK-01-200/Oxide..........25
圖3-2 奈米壓印模具的設計........................................................................................28
圖3-3 奈米壓印模具的設計........................................................................................29
圖3-4 奈米壓印模具製作之流程................................................................................30
圖3-5 蒸鍍脫膜劑示意圖............................................................................................33
圖3-6 蒸鍍脫模劑所使用的玻璃容器.......................................................................34
圖3-7 使用各種修飾層之有機薄膜電晶體流............................................................36
圖3-8 奈米多通道有機薄膜電晶體流程...................................................................37
圖4-1 pentacene 沉積於各種修飾層上之AFM 影像.................................................42
圖4-2 修飾層PAK-01-200之漏電流密度..................................................................43
圖4-3 修飾層PAK-01-200 之C-V 曲線..................................................................43
圖4-4 模具一(HSQ:MIBK=1:3)各種線寬之SEM 影像(曝光劑量360、顯影濃
度25%、顯影溫度15℃,顯影時間30 秒) .................................................46
圖4-5(a) 模具一(HSQ:MIBK=1:3)各種線寬之SEM 影像(曝光劑量480、顯影
濃度25%、顯影溫度15℃,顯影時間30 秒) ..........................................47
圖4-5(b) 模具一(HSQ:MIBK=1:3)各種線寬之SEM 影像(曝光劑量480、顯影
濃度25%、顯影溫度20℃,顯影時間30 秒) ..........................................48
圖4-5(c) 模具一(HSQ:MIBK=1:3)各種線寬之SEM 影像(曝光劑量480、顯影
濃度25%、顯影溫度20℃,顯影時間60 秒) ..........................................49
圖4-6(a) 模具二(HSQ:MIBK=1:1)各種線寬之SEM 影像(曝光劑量480、顯影
濃度25%、顯影溫度15℃,顯影時間30 秒) ..........................................50
圖4-6(b) 模具二(HSQ:MIBK=1:1)各種線寬之SEM 影像(曝光劑量480、顯影
濃度25%、顯影溫度20℃,顯影時間30 秒) .........................................51
圖4-6(c) 模具二(HSQ:MIBK=1:1)各種線寬之SEM 影像(曝光劑量480、顯影
濃度25%、顯影溫度20℃,顯影時間60 秒) ..........................................52
圖4-7(a) 模具二(HSQ:MIBK=1:1)各種線寬之SEM 影像(曝光劑量360、顯影
濃度25%、顯影溫度15℃,顯影時間30 秒) ..........................................53
圖4-7(b) 模具二(HSQ:MIBK=1:1)各種線寬之SEM 影像(曝光劑量360、顯影
濃度25%、顯影溫度20℃,顯影時間60 秒) ..........................................54
圖4-8 模具一(HSQ:MIBK=1:3)各種線寬1000X 之OM 影像(曝光劑量480、
顯影濃度25%、顯影溫度15℃,顯影時間30 秒) .....................................55
圖4-9 模具二(HSQ:MIBK=1:1)各種線寬1000X 之OM 影像(曝光劑量360、
顯影濃度25%、顯影溫度15℃,顯影時間30 秒) .....................................56
圖4-10 壓印壓力不足所產生的壓印結果OM 影像.................................................59
圖4-11 HSQ 模具壓印於PAK-01-200 修飾層之OM 影像.......................................60
圖4-12 不同稀釋比例之PAK-01-200 經壓印其後各種多通道之AFM 影像........61
圖4-12 不同稀釋比例之PAK-01-200 經壓印其後各種多通道之AFM 影像........62
圖4-13 各種有機修飾層單通道(100um)之(a) ID-VD (b) ID-VG.................................64
圖4-14 各種有機修飾層單通道(150um)之(a) ID-VD (b) ID-VG.................................65
圖4-15 各種有機修飾層之C-V...................................................................................65
圖4-16 多重奈米通道有機薄膜電晶體元件完成之OM 圖.....................................67
圖4-17 pentacene 沉積於單通道之AFM 影像...........................................................68
圖4-18 pentacene 沉積於線寬間距400 nm/800 nm 奈米多通道之AFM 影像.....69
圖4-19 pentacene 沉積於線寬間距600 nm/1200 nm 奈米多通道之AFM 影像.....70
圖4-20 pentacene 沉積於線寬間距800 nm/1600 nm 奈米多通道之AFM 影像.....71
圖4-21 pentacene 沉積於線寬間距800 nm/800 nm 奈米多通道之AFM 影像.....72
圖4-22 pentacene 沉積於線寬間距800 nm/400 nm 奈米多通道之AFM 影像.......73
圖4-23 pentacene 沉積於單通道之AFM 影像(PAK-01-200 稀釋比例為1:3).......74
圖4-24 pentacene 沉積於線寬間距400 nm/800 nm 奈米多通道之AFM 影像
(PAK-01-200 稀釋比例為1:3)......................................................................75
圖4-25 pentacene 沉積於線寬間距600 nm/1200 nm 奈米多通道之AFM 影像
(PAK-01-200 稀釋比例為1:3)......................................................................76
圖4-26 pentacene 沉積於線寬間距800 nm/1600 nm 奈米多通道之AFM 影像
(PAK-01-200 稀釋比例為1:3)......................................................................77
圖4-27 pentacene 沉積於線寬間距800 nm/800 nm 奈米多通道之AFM 影像
(PAK-01-200 稀釋比例為1:3)......................................................................78
圖4-28 pentacene 沉積於線寬間距800 nm/400 nm 奈米多通道之AFM 影像
(PAK-01-200 稀釋比例為1:3)......................................................................79
圖4-29 單通道(100μm ) vs MP1 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
=未稀釋) .......................................................................................................84
圖4-30 單通道(100μm ) vs MP1 線寬間距1:1 之(a) ID-VD (b) ID-VG(PAK-01-200
=未稀釋) .......................................................................................................85
圖4-31 單通道(100μm ) vs MP1 線寬間距1:0.5 之(a) ID-VD (b) ID-VG(PAK-01-200
=未稀釋) .......................................................................................................86
圖4-32 單通道(150μm ) vs MP2 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
=未稀釋) .......................................................................................................87
圖4-33 單通道(100μm ) vs MV1 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
=未稀釋) .......................................................................................................88
圖4-34 單通道(150μm ) vs MV2 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
=未稀釋) .......................................................................................................89
圖4-35 單通道(100μm ) vs MP1 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:3) ............................................................................................................90
圖4-36 單通道(100μm ) vs MP1 線寬間距1:1 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:3) ............................................................................................................91
圖4-37 單通道(100μm ) vs MP1 線寬間距1:0.5 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:3) ............................................................................................................92
圖4-38 單通道(150μm ) vs MP2 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:3) ............................................................................................................93
圖4-39 單通道(100μm ) vs MV1 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:3) ............................................................................................................94
圖4-40 單通道(150μm ) vs MV2 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:5) ............................................................................................................95
圖4-41 單通道(100μm ) vs MP1 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:5) ............................................................................................................96
圖4-42 單通道(100μm ) vs MP1 線寬間距1:1 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:5) ............................................................................................................97
圖4-43 單通道(100μm ) vs MP1 線寬間距1:0.5 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:5) ............................................................................................................98
圖4-44 單通道(150μm ) vs MP2 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:5) ............................................................................................................99
圖4-45 單通道(100μm ) vs MV1 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:5) ..........................................................................................................100
圖4-46 單通道(150μm ) vs MV2 線寬間距1:2 之(a) ID-VD (b) ID-VG(PAK-01-200
= 1:5) ..........................................................................................................101
圖4-47 MP1 線寬間距800 nm/1600 nm(100μm) vs MP2 線寬間距800 nm/1600 nm
(150μm)之(a) ID-VD (b) ID-VG (PAK-01-200 = 未稀釋) .........................102
圖4-48 MP1 線寬間距800 nm/1600 nm(100μm) vs MP2 線寬間距800 nm/1600 nm
(150μm)之(a) ID-VD (b) ID-VG (PAK-01-200 = 1:3) ................................103
圖4-49 MP1 線寬間距800 nm/1600 nm(100μm) vs MP2 線寬間距800 nm/1600 nm
(150μm)之(a) ID-VD (b) ID-VG (PAK-01-200 = 1:5) ................................104
圖4-50 MP1 線寬間距800 nm/1600 nm(100μm) vs MV1 線寬間距800 nm/1600 nm
(150μm)之(a) ID-VD (b) ID-VG (PAK-01-200 = 未稀釋) .........................105
圖4-51 MP1 線寬間距800 nm/1600 nm(100μm) vs M V1 線寬間距800 nm/1600 nm
(150μm)之(a) ID-VD (b) ID-VG (PAK-01-200 = 1:3) ................................106
圖4-52 MP1 線寬間距800 nm/1600 nm(100μm) vs M V1 線寬間距800 nm/1600 nm
(150μm)之(a) ID-VD (b) ID-VG (PAK-01-200 = 1:5) ................................107
圖4-53 各種MP1 線寬間距800 nm/1600 nm(100μm)之(a) ID-VD (b) ID-VG.......108
圖4-54 各種MV1 線寬間距800 nm/1600 nm(100μm)之(a) ID-VD (b) ID-VG.......109
圖4-55 各種單通道100μm)之(a) ID-VD (b) ID-VG..................................................110
圖A-1 鋁奈米多通道製作流程.................................................................................124
圖A-2 HSQ 模具壓印於PAK 光阻上之各種線寬SEM 影像及AFM 影像..........127
圖A-2 HSQ 模具壓印於PAK 光阻上之各種線寬SEM 影像及AFM 影像..........128
圖A-2 HSQ 模具壓印於PAK 光阻上之各種線寬SEM 影像及AFM 影像..........129
圖A-3 在固定的金屬蝕刻時間下,不同O2 plasma 蝕刻時間所獲得的蝕刻深度
SEM影像(線寬/間距=900/700) ................................................................130
圖A-4 在固定的金屬蝕刻時間下,不同O2 plasma 蝕刻時間所獲得的蝕刻深度
關係圖..........................................................................................................130
圖A-5 經過1 分45 秒金屬鋁蝕刻後之各種線寬SEM 與AFM 影像................132
圖A-5 經過1 分45 秒金屬鋁蝕刻後之各種線寬SEM 與AFM 影像................133
圖A-6 經過1 分45 秒金屬鋁蝕刻後之各種線寬OM 影像(1000X) .....................134
圖A-7 pentacene 沉積於OTS-C18 修飾層之單通道AFM 影像..............................135
圖A-8 pentacene 沉積於OTS-C18 修飾層之線寬間距900 nm/700 nm AFM 影
像....................................................................................................................135
圖A-9 pentacene 沉積於F13-TCS 修飾層之單通道AFM 影像..............................135
圖A-10 pentacene 沉積於F13-TCS 修飾層之線寬間距900 nm/700 nm AFM 影
像....................................................................................................................135
圖A-11 pentacene 沉積於OTS-C18 修飾層上之各種線寬間距SEM 影..................136
表目錄
表2-1 去離子水和二碘甲烷表面張力的分量…........................................................15
表2-2 PAK-01-200 組成成分…..................................................................................21
表3-1 不同稀釋比例之PAK-01-200 轉速vs 膜厚......................................................26
表3-2(a) 模具規格設計…..........................................................................................30
表3-2(b) 模具規格設計….........................................................................................31
表3-3 ITO 玻璃清洗過程…........................................................................................32
表3-4(a) HSQ:MIBK=1:1 的模具製作參數表.........................................................32
表3-4(b) HSQ:MIBK=1:3 的模具製作參數表.........................................................32
表3-5 UV 奈米壓印參數表(for 奈米多通道修飾層) ..............................................34
表3-6 元件規格表式分類表 ....................................................................................35
表3-7 元件規格表式分類表 ....................................................................................37
表4-1 測試液在各種表面形成的液滴照片................................................................40
表4-2 各種表面的接觸角...............................................................41
表4-3 各種表面的表面能...............................................................41
表4-4 模具一(HSQ:MIBK=1:3)經各種參數顯影後之統計表..........57
表4-5 模具一(HSQ:MIBK=1:1)經各種參數顯影後之統計表..........58
表4-6 不同稀釋比例之PAK-01-200 轉速vs 壓印深度.........................................61
表4-7 各種修飾層元件之電性比較表......................................................................66
表4-8 各種線寬之電容值比較表(PAK-01-200:未稀釋) ......................................80
表4-9 各種線寬之電容值比較表(PAK-01-200:1:3) .............................................81
表4-10 各種線寬之電容值比較表(PAK-01-200:1:5) ...........................................81
表4-11 通道平行電極之各種線寬電性比較表(PAK-01-200 = 未稀釋)..............111
表4-12 通道垂直電極之各種線寬電性比較表(PAK-01-200 = 未稀釋)..............112
表4-13 通道平行電極之各種線寬電性比較表(PAK-01-200 = 1:3)....................113
表4-14 通道垂直電極之各種線寬電性比較表(PAK-01-200 = 1:3)....................114
表4-15 通道平行電極之各種線寬電性比較表(PAK-01-200 = 1:5)....................115
表4-16 通道垂直電極之各種線寬電性比較表(PAK-01-200 = 1:5)....................116
表A-1 UV 奈米壓印參數表(for 鋁金屬蝕刻) ...................................................... 124
表A-2 O2 plasma 去除殘留層參數表.......................................................................125
表A-3 金屬鋁蝕刻參數表…...................................................................................126
參考文獻
[1] G. Horowitz, “Organic Thin Film Transistors: From Theory to Real Devices”, J.
Mat. Res. 19, pp. 1946(2004).
[2] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic Solar Cells”,
Adv. Funct. Mater. 11, pp. 15(2001).
[3] T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H.
Neuner, E. Becker, H.-H. Johannes, and W. Kowalsky, “Inverted
Top-Emitting Organic Diodes Using Sputter-Deposited Anodes ”, Appl.
Phys. Lett. 82, pp. 284(2003).
[4] C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: A
review of recent advances,” IBM J. RES. & DEV. VOL. 45, NO. 1(2001).
[5] D.J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom,
"Pentacene organic thin-film transistors-molecular ordering and mobility", IEEE
Electron Device Lett., 18, 87(1997).
[6] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M.
Shaw,“Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric
Constant Gate Insulators”, Science 283, 822(1999).
[7] M. Ahlskog, J. Paloheimo, H. Stubb, and A. Assadi, “Pressure-dependent
Operation in Poly(3-alkylthiophene) Field-effect Transistors and Schottky
Diodes”, Synth Met., 65, 77(1994).
[8] P. Dyreklev, G. Gustafassou, O. Inganas, and H. Stubb, “Aligned Polymer Chain
Field Effect Transistors”, Solid State Communications, 82, 317(1992).
[9] D. Knipp, R. A. Street, A. Volkel, J. Ho, J. Appl. Phys. 93, 347(2003).
[10] R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund, A. Kahn, F. Family,
G. Scoles, Phys. Rev. Lett. 91, 136102(2003).
[11] K. Shin, C. Yang, S. Y. Yang, H. Jeon, C. E. Park, Appl. Phys. Lett. 88, 072109
(2006).
[12] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 81, 268
(2006).
[13] M. Cavallini, P. Stoliar, J. Moulin, M. Surin, P. Leclere, R. Lazzaroni, D. W.
Breiby, J. W. Andreasen, M. M. Nielsen, P. Sonar, A. C. Grimsdale, K. Mullen,
F. Biscarini, Nano Lett. 5, 2422(2005).
[14] M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L.
Headrick, B. T. Weslowski, R. N. Shashidhar, C. S. Dulcey, Appl. Phys. Lett.
79, 1300(2001).
[15] S. H. Jin, H. U. Seo, D. H. Nam, W. S. Shin, J. H. Choi, U. C. Yoon, J. W. Lee,
J. G. Song, D. M. Shin, Y. S. Gal, J. Mater. Chem. 15, 5029(2005).
[16] Qijun Sun, Ju-Hyung Kim, Jung-Hwan Park, Soonmin Seo, “Characteristics of a
pentacene thin film transistor with periodic groove patterned
poly(methylmethacrylate) dielectrics”, Appl. Phys. Lett. 96, 103301(2010).
[17] Sung Jin Jo, Chang Su Kim, Min Jung Lee, Jong Bok Kim, Seung Yoon Ryu,
Joo Hyon Noh, Kyuwook Ihm, Hong Koo Baik, and Youn Sang Kim
” Inducement of Azimuthal Molecular Orientation of Pentacene by Imprinted
Periodic Groove Patterns for Organic Thin-Film Transistors”, Adv. Mater. 20,
1146–1153 (2008).
[18] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of
sub-25nm vias and tenches in polymer”, Appl. Phys. Lett.67, 3114(1995).
[19] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint
Lithography with 25-Nanometer Resolution”, Science, 272, 85(1996).
[20] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,”Nanoimprint
Lithography”, J. Vac. Sci. Technol. B 14, 4129 (1996).
[21] Wei-Yang Chou, Ming-Hua Chang, Horng-Long Cheng, Shih-Po Yu,
Yung-Chun Lee, Cheng-Yu Chiu, Chung-Yi Lee, and Dun-Ying Shu,
“Application of nanoimprinting technology to organic field-effect transistors”,
Appl. Phys. Lett. 96, 083305(2010).
[22] Yung-Chun Wu, Chun-Yen Chang, Ting-Chang Chang, Po-Tsun Liu, Chi-Shen
Chen, Chun-Hao Tu, Hsiao-Wen Zan, Ya-Hsiang Tai, Simon Min Sze, “High
Performance and High Reliability Polysilicon Thin-Film Transistors with
Multiple Nano-Wire Channels”, p.777-780 (2004).
[23] N. Yamauchi, J-J. J. Hajjar, R. Reif, K. Nakazawa, K. Tanaka, “Characteristics
of narrow-channel polysilicon thin-film transistors”, IEEE Trans. Electron
Devices, vol. 38, no. 8, pp.1967-1968 (1991).
[24] Y. Sun, Y. Liu, D. Zhu, “Advances in organic field-effect transistors”, J.
Mater. Chem. 15, p.53 (2005).
[25] I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk,
“Morphology identification of the thin film phases of vacuum evaporated
pentacene on SIO2 substrates”, Synth. Met., vol.104, pp.175 (1999).
[26] G. Dong, I. Susumu, S. Koichiro, M. Hitoyuki and T. Kazuo, “Effect of
annealing on the mobility and morphology of thermally activated
pentacene thin film transistors”, J. Appl. Phys., vol.99, pp.094052 (2006).
[27] J. Moll, “Physics of Semiconductors”, New York: McGraw-Hill (1964).
[28] 施敏, “半導體元件物理與製造技術”, 高立出版社 (1997).
[29] 徐武軍, “高分子材料導論” ,五南出版社(2004).
[30] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir
15, 4321(1999).
[31] Kunjithapatham Sethuraman, Shizuyasu Ochiai, Kenzo Kojima, and Teruyoshi
Mizutani, “Performance of poly(3-hexylthiophene) organic field-effect transistors
on cross-linked poly(4-vinyl phenol) dielectric layer and solvent effects”, Appl.
Phys. Lett. 92, 183302 (2008).
[32] Yoonyoung Chung, Eric Verploegen, Arturas Vailionis, Yun Sun, Yoshio
Nishi, Boris Murmann, and Zhenan Bao, “Controlling Electric Dipoles in
Nanodielectrics and Its Applications for Enabling Air-Stable n-Channel Organic
Transistors”, Nano Lett. 11, 1161–1165(2011).
[33] Marl, E. M., Krishna, M. R. K & Michael, T. "Role of Solvent on the
Silanization of Glass with Octadecyltrichlorosilane." Langmuit 10,
3607-3614(1994).
[34] A. Kudelski, “Chemisorption of 2-Mercaptoethanol on Silver, Copper, and
Gold: Direct Raman Evidence of Acid-InducedChanges in Adsorption/
Desorption Equilibria”, Langmuir, 19, 3805-3813(2003).
[35] A. Kudelski, “Raman study on the structure of 3-mercaptopropionic acid
monolayers on the silver”, Surface Science, 502~503, 219-223(2002).
[36] H. Hagenstrom, M. A. Schneeweiss and D. M. Kolb, “Modification of a
Au(111) Electrode with Ethanethiol. 2. Copper Electrodeposition”, Langmuir,
15, 7802-7809(1999).
[37] 羅佑旭, ”烷基矽烷分子自組裝薄膜系統之製備與鑑定” ,國立東華大學化學
研究所碩論(2005).
[38] J. Cornil, J. Ph. Calbert and J. L. Brédas, “Electronic Structure of the Pentacene
Single Crystal: Relation to Transport Properties”, J. Am.Chem. Soc., vol.123,
pp.1250(2001).
[39] Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. P. Calbert, J. Cornil, and J. L.
Brédas, “Three-dimensional band structure and bandlike mobility in oligoacene
single crystals: A theoretical investigation”,J. Chem. Phys., vol.118, pp.3764
(2003).
[40] C. C. Mattheus, G. A. de Wijs, R. A. de Groot and T. T. M. Palstra,
“Modeling the Polymorphism of Pentacene”, J. Am. Chem. Soc., vol.125,
pp.6323(2003).
[41] F.-J. Meyer Zu Heringdorf, M. C. Reuter and R. M. Tromp, "Growth
dynamics of pentacene thin films”, Nature, 412, pp.517(2001).
[42] J. E. Northrup, M. L. Tiago and S. G. Louie, “Surface energetics and growth of
Pentacene”, Phys. Rev. B, 66, pp.121404(2002).
[43] F.-J. Meyer Zu Heringdorf, M. C. Reuter and R. M. Tromp, “Growth
dynamics of pentacene thin films”, Nature, vol.412, pp.517(2001).
[44] P. Guaino, D. Carty, G. Hughes, P. Moriarty and A. A. Cafolla, “Scanning
tunneling microscopy study of pentacene adsorption on Ag/Si(1 1 1)-( 31/2×
31/2 )R30°”, Appl. Surf. Sci., vol.212-213, pp.537(2003).
[45] N. Koch, A. Elschner, J. Schwartz and A. Kahn, “Organic molecular films
on gold versus conducting polymer: Influence of injection barrier height
and morphology on current–voltage characteristics”, Appl. Phys. Lett.,
vol.82, pp.2281(2003).
[46] P. G. Schroeder, C. B. France, J. B. Park and B. A. Parkinson, “Orbital
Alignment and Morphology of Pentacene Deposited on Au(111) and SnS2
Studied Using Photoemission”, J. Phys. Chem. B, vol.107, pp.2253(2003).
[47] C.C. Yang、W.C. Chen, J. Mater. Chem., 12, 1138-1141(2002).
[48] Hideo Namatsu, Yasuo Takahashi, et al, “Three-dimensional siloxane resist for
the formation of nanopatterns with minimum linewidth fluctuations” J. Vac. Sci.
Technol. B 16(1)(1998).
[49] 魏易玄, ”低介電常數材料氫矽酸鹽類於製程整合上的應用” ,國立中山大
學91年碩士論文.
[50] TOYO GOSEI co.,LTD. T.G.C Research, LaboratoryMaterial Safety Data Sheet.
[51] N. Tillman, A. Ulman, J. S. Schildkraut and T. L. Penner, Journal of the
American Chemical Society110, 6136-6144(1988).
[52] R. Ruiz, A. Papadimitratos, A. C. Mayer, and G. G. Malliaras, “Thickness
Dependence of Mobility in Pentacene Thin-Film Transistors”, Adv. Mater., 7,
1795(2005).
[53] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P.
Heremans, “Influence of the dielectric roughness on the performance of
pentacene transistors”, Appl. Phys. Lett., 85, 4400(2004).
[54] Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho, “Effects of
the permanent dipoles of self-assembled monolayer-treated insulator surfaces on
the field-effect mobility of a pentacene thin-film transistor”, Appl. Phys.
Lett., 90, 132104( 2007).
[55] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil,
L. Montelius, Microelectronic Engineering, vol.61-62, pp.441(2002).
[56] Jem-Kun Chen, Fu-Hsiang Ko, Kuen-Fong Hsieh, Cheng-Tung Chou, Feng-Chih
Chang, J. Vac. Sci. Technol. B, vol.22, pp.3233(2004).
[57] A. R. Brown, C. P. Jarrent, D. M. de Leeuw and M. Matters, “Field-effect
transistors made from solution-processed organic semiconductors", Synth.
Met., 88, 37, (1997).
[58] Sang Chul Lim, Seong Hyun Kim, Jung Hun Lee, Mi Kyung Kim, Do Jin Kim,
Taehyoung Zyung, Syn. Met. 148 . 75(2005).
[59] T. Jentzsch, H. J. Juepner, K. W. Brzezinka, and A. Lau, “Efficiency of optical
second harmonic generation from pentacene films of different morphology and
structure”, Thin Solid Films, 315, 273, (1998).
[60] J. A. Last, A. C. Hillier, D. E. Hooks, J. B. Maxson and M. D.Ward, “Epitaxially
Driven Assembly of Crystalline Molecular Films on Molecular Films on
Substrates”, Chem. Mater., 10, 422 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張盈堃(2005)。在教育場域中實踐幾近民主:同志教師身分認同與抗拒實踐為例。載於張盈堃等主編,誰害怕教育改革?—結構、行動與批判教育學(頁179-219)。台北:洪葉文化。
2. 張盈堃(2001)。殘缺文本的還原—教科書性別知識的生產、審查與刪削。婦女與兩性學刊,12,139-165。
3. 翁秀琪(1998)。批判語言學、在地權力觀和新聞文本分析:宋楚瑜辭官事件 中李宋會的新聞分析。新聞學研究,57,91-126。
4. 林昱貞、楊佳羚、張明敏(2004)。性取向污名之建構、抗拒與轉化:一個同性戀議題的教學實踐。教育研究集刊,50(3),91-121。
5. 朱偉誠(2003)。同志.台灣:性公民、國族建構或公民社會。女學學誌:婦女與性別研究,15,115-151。
6. 古玉英(2003)。國小啟聰班國語科教科書性別角色之內容分析。未出版之碩士論文,國立台東大學教育研究所,台東。
7. 王雅玄(2005)。社會領域教科書的批判論述分析:方法論的重建。教育研究集刊,51(2),67-97。
8. 張素真(1998)。尊重人權是民主政治的體現─人權教育內涵。新世紀智庫論壇,4, 51-61。
9. 莊明貞(2000)。「兩性教育」九年一貫國民教育課程綱要之規畫。教育研究資訊,7(4),28-47。
10. 黃怡雯(2004)。同志轟趴事件的省思。師友,441,38-40。
11. 詹寶菁(2006)。專書評介:Norman Fairclough之《論述分析:文本分析在社會研究上之應用》。初等教育學刊,24,87-94。
12. 駱俊宏、林燕卿、王素女、林蕙瑛等人(2005)。從異性戀霸權、父權體制觀看同性戀者之處境與污名。台灣性學學刊,11(2),61-74。
13. 謝小芩(2006)。外國性別平等教育立法與實施經驗。載於畢恆達、游美惠主編,性別解碼全記錄。台北:教育部。
14. 簡如君(2004)。「父愛政治」下的同志權發展:新加坡個案研究。未出版之碩士論文,暨南國際大學東南亞研究所,南投。
15. 蘇峰山(2004)。論述分析導論。載於林本炫、何明修主編,質性研究方法及其超越。嘉義:南華大學教育社會研究所出版。