跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅方鈞
研究生(外文):Fang-Chun Lo
論文名稱:基於模糊類神經網路之人臉辨識
論文名稱(外文):Fuzzy Neural Network Based Face Recognition
指導教授:吳俊德吳俊德引用關係
指導教授(外文):Gin-De Wu
口試委員:洪志偉莊家峰
口試日期:2011-07-06
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:33
中文關鍵詞:模糊類神經網路人臉辨識尺度不變特徵轉換
外文關鍵詞:Fuzzy Neural NetworkFace RecognitionScale Invariant Feature Transform
相關次數:
  • 被引用被引用:2
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
近年來影像處理與機械視覺技術不斷進步,人臉辨識也成為一個重要技術。因此本論文提出一套使用模糊類神經網路(FNN)分類器來進行人臉辨識。本論文是採用局部特徵當作人臉特徵參數。本文將人臉辨識分為兩大部分。第一部分利用尺度不變特徵轉換(SIFT)的技術,從人臉圖片中找出特徵值。尺度不變特徵值轉換分為空間尺度極值偵測(Scale-space extrema detection)、關鍵點定位(Keypoint localization)、定向分配(Orientation assignment)、關鍵點描述(Keypoint descriptor)四個階段產生影像特徵值集合。第二部分,將所有人臉的特徵值當作模糊類神經網路(FNN)輸入值做為最後的判斷,為了快速訓練我們使用了二元樹分類法,建構出二元樹。實驗結果顯示本文所提出的方法,將可以提高人臉辨識度。
In recent years, image processing and robot vision technology continues to development, and the human face recognition has become an important technology; therefore, this thesis presents a human face recognition system based on fuzzy neural network. The local feature is used as the facial feature parameters.The face recognition method which is presented consists of two steps. First, using the Scale Invariant Feature Transform (SIFT) method to find the features from the pictures. The Scale Invariant Feature Transform (SIFT) method has four parts, Scale-space extrema detection, Keypoint localization, Orientation assignment, Keypoint descriptor. In the second step, we take all features as FNN inputs to make the final decision. In order to training fast that we use the method of binary tree, and build a binary tree. The experiment results display that the method can identification human face efficiently.
Contents

Acknowledgement .................i
Chinese abstract ........ii
English abstract .......iii
Contents ................iv
List of tables .................v
List of figures ................vi


Chapter 1 Introduction ....1
1.1 Motivation 1
1.2 Related works ....3
1.3 Research process ....5
1.4 Organization of this thesis.....5
Chapter 2 Maximizing-Discriminability-Based Self-Organizing Fuzzy Networ 6
2.1 Introduction of MDFNN ...6
2.2 Structure of MDFNN ...........7
2.3 Learning algorithm of MDFNN ........10
Chapter 3 Scale Invariant Feature Transform 13
3.1 Scale-space extrema detection ........14
3.2 Accurate Key point Localization ........17
3.3 Orientation assignment ................19
3.4 The local image descriptor ................20
Chapter 4 Experimental results ................22
Chapter 5 Conclusions ........................29

[1]W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A
literature survey,” ACM Computing Surveys, 35(4):399–458, December 2003.
[2]Wang Yunhong, Fan Wei, and Tan Tieniu, “Face recognition based on information fusion,” Chinese Journal of Computers, vol. 28(10), 2005, pp. 1657-1663.
[3]M. Brown and D.G. Lowe, “Invariant features from interest point groups,” in British Machine Vision Conference, 2002, pp. 656-665.
[4]D.G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
[5]G. D. Wu, and P. H. Huang, “A Maximizing-Discriminability-Based Self-Organizing fuzzy network for classification problems,” IEEE Trans. Fuzzy systems., vol. 18, no. 2, April. 2010.
[6]J.J. Koenderink, “The structure of images,” Biological Cybernetics,vol. 50,no.
5,pp. 363-396, 1984.
[7]T. Lindeberg, “Scale-space theory: A basic tool for analysing structures at different scales,” Journal of Applied Statistics, vol. 21, no. 2, pp. 224-270, 1994.
[8]Ben Fei and Jinbai Liu, “Binary tree of SVM: a new fast multiclass training and classification algorithm,” IEEE Trans. Neural Networks., Vol. 17, No. 3, MAY 2006
[9]M. Brown and D. Lowe. Recognising panoramas. In IEEE Int. Conf. on Computer Vision, pages 1218–1225, 2003. Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local image descriptors. In IEEE Conf. on Computer Vision and Pattern Recognition, 2004.
[10]D. Lowe. Local feature view clustering for 3d object recognition. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 682–688, 2001.

[11]Suvendu Mandal and Bibhas Chandra Dhara, “A Hybrid Face Recognition Method Based on Structural and Holistic Features,” IEEE Conf. Advances in Pattern Recognition, pp.441,4-6 Feb. 2009.
[12]Marios Savvides, Jingu Heo, Ramzi Abiantun, Chunyan Xie and B.V.K. Vijaya Kumar, “Class Dependent Kernel Discrete Cosine Transform Features for Enhanced Holistic Face Recognition in FRGC-II,” IEEE Conf. Speech and Signal processing, Vol. 2, 14-19 May 2006.
[13]Kin-Man Lam and Hong Yan, “An Analytic-to-Holistic Approach for Face Recognition Based on a Single Frontal View,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 20, No. 7, July 1998.
[14]Yu Su and Shiguang Shan and Xilin Chen and Wen Gao, “Hierarchical Ensemble of Global and Local Classifiers for Face Recognition,” IEEE Trans . Image Processing,
Vol. 18, No. 8, August 2009.
[15]Jie Zou and Qiang Ji and George Nagy, “A Comparative Study of Local Matching
Approach for Face Recognition,” IEEE Trans. Image Processing, Vol.16, No.10, October 2007.
[16]Ajmal S. Mian, Mohammed Bennamoun, and Robyn Owens, “An Efficient Multimodal 2D-3D Hybrid Approach to Automatic Face Recognition,” IEEE Trans. Pattern Analysis And Machine Intelligence, Vol. 29, No. 11, November 2007.
[17]Xiaoyang Tan and Bill Triggs, ” Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions,” IEEE Trans. Image Processing, Vol. 19, No. 6, June 2010.
[18]Baochang Zhang, Yongsheng Gao, Sanqiang Zhao, and Jianzhuang Liu, “ Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor,” IEEE Trans. Image Processing, Vol. 19, No. 2, February 2010.
[19]Hazým Kemal Ekenel, Hua Gao, and Rainer Stiefelhagen,” 3-D Face Recognition Using Local Appearance-Based Models,” IEEE Trans. Information Forensics And Security, Vol. 2, No. 3, September 2007.
[20]Shufu Xie, Shiguang Shan, Xilin Chen, Jie Chen, “Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition,” IEEE Trans. Image Processing, Vol. 19, No. 5, May 2010.
[21]Anil Kumar Sao and B. Yegnanarayana, “Face Verification Using Template Matching,” IEEE Trans. Information Forensics And Security, Vol. 2, No. 3, September 2007.
[22]Pranab Mohanty and Rangachar Kasturi, “From Scores to Face Templates: A Model-Based Approach,” IEEE Trans. Pattern Analysis And Machine Intelligence, Vol. 29, No. 12, December 2007
[23]Ralph Gross, Iain Matthews, and Simon Baker, “Appearance-Based Face Recognition
and Light-Fields,” IEEE Trans. Pattern Analysis And Machine Intelligence, Vol. 26, No. 4, April 2004.
[24]Yun Fu and Nanning Zheng, “M-Face: An Appearance-Based Photorealistic Model
for Multiple Facial Attributes Rendering,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 16, No. 7, July 2006.
[25]Wenchao Zhang, Shiguang Shan, Xilin Chen and Wen Gao, “Local Gabor Binary Patterns Based on Kullback–Leibler Divergence for Partially Occluded Face Recognition,” IEEE Signal Processing Letters, VOL. 14, No. 11, November 2007.
[26]Fadi Dornaika and Franck Davoine, “On Appearance Based Face and Facial Action Tracking,” IEEE Trans. Circuits and Systems For Video Technology, Vol. 16, No. 9, September 2006.
[27]D. Chai, K.N. Mgan, Locating facial region of a head-and-shoulders color images, in: Proceedings of the Third International Conference on Automatic Face and Gesture Recognition, pp. 124–129, 1998.
[28]R. Lienhart, J. Maydt, An extended set of Haar-like features for rapid object detection, in: Proceedings of IEEE International Conference on Image Processing, pp. 900–903, 2002.
[29]C.F. Juang, S.H. Chiu, S.W. Chang, A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems, IEEE Trans. Fuzzy Systems, vol.15, no.5, pp.998-1008, October. 2007. (SCI、EI)
[30]Chengjun Liu, and Harry Wechsler, “Gabor Feature Based Classification Using the
Enhanced Fisher Linear Discriminant Model for Face Recognition,” IEEE Trans. Image Processing, Vol. 11, No. 4, April 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top