(3.236.214.19) 您好!臺灣時間:2021/05/10 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林哲菁
研究生(外文):Lin, Che-Ching
論文名稱:基於有限狀態馬可夫鏈模型之合作式車載網路性能分析
論文名稱(外文):Performance Analysis of Cooperative Vehicular Network with FSMC Modeling
指導教授:李彥文李彥文引用關係
指導教授(外文):Lee, Yinman
口試委員:張敏寬黃建華
口試委員(外文):Chang, Min-KuanHuang, Jane-Hwa
口試日期:2011-07-12
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:49
中文關鍵詞:有限狀態馬可夫鏈模型雙重中上衰落通道合作式通訊系統
外文關鍵詞:Finite-state Markov chain modelDouble Nakagami-m fading channelCooperative communication system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究之目的是應用有限狀態馬可夫鏈模型(Finite-State Markov Chain, FSMC),分析在雙重中上衰落通道(Double Nakagami-m Fading Channel)下合作式通訊系統(Cooperation Communication System)的效能。先討論在雙重中上衰落通道中,在接收端使用最大比例合成 (Maximal Ratio Combining, MRC)的方式,並推導出快速分析之參數,再將有限狀態馬可夫鏈模型套用到合作式通訊系統,模擬分析使用解調後轉傳(Decode and Forward, DF)的合作式通訊系統的位元錯誤率(Bit Error Rate, BER)。雙重中上衰落通道適用傳送端和接收端皆在移動的情況,利用有限狀態馬可夫鏈模型的概念,找出接收端雜訊比(Signal-to-Noise Ratio, SNR)的範圍,並且利用適應性分割法(Adaptive Partition Method)切出數個不等的狀態,快速分析合作式通訊系統在衰落通道為雙重中上衰落情況下的位元錯誤率及效能。
The aim of this thesis is to investigate the use of the finite state Markov chain (FSMC) model for analyzing the performance of cooperative communications. First, we discuss that the receiver uses Maximal Ratio Combining technique in the Double Nakagami-m fading channel. We derive the necessary parameters used in the FSMC modeling process. Then, we employ the resultant FSMC model to analyze the performance of a cooperative communication system. The bit error rate (BER) with the decode-and-forward (DF) protocol is simulated through the derived model. This double Nakagami-m fading formulation is suitable for describing the mobile-to-mobile (M2M) communication scenario. With the FSMC model, we can obtain the range of the signal-to-noise ratio (SNR) and the number of states with different probabilities by the Adaptive Partition. We show that the FSMC model can successfully describe the double Nakagami-m fading channel as well, and can provide a fast simulation of the resultant BER performance in cooperation.
誌謝 I
中文摘要 II
目錄 IV
圖目錄 V
表目錄 VII
第一章 緒論 1
第二章 有限狀態馬可夫鏈模型 3
2.1馬可夫過程之性質 5
2.2建立一階有限狀態馬可夫鏈模型 7
第三章 FSMC快速分析雙重中上衰落通道 15
3.1中上衰落通道 15
3.2雙重中上衰落通道 19
3.3利用FSMC Model估算平均訊雜比來分析位元錯誤率 21
3.3.1 第一種方法:改良等機率分割法 22
3.3.2 第二種方法:適應性分割法(Adaptive Partition) 22
3.4 最大比例合成 27
3.5 FSMC 在雙重中上衰落通道使用MRC之效能分析 29
第四章 合作式車載網路通訊系統 36
4.1 合作式通訊系統模型 36
4.2 符元錯誤率 39
4.3 FSMC在雙重中上衰落通道中合作式通訊系統使用MRC之效能分析 40
第五章 結論與未來方向 47
參考文獻 48

[1]Y. Lee and M. Tsai, “Performance of Decode-and-Forward Cooperative Communications over Nakagami-m Fading Channels,” IEEE Trans. Veh.Technol., vol. 58, no. 3, pp. 1218-1228, 2009.
[2]H. Ilhan, M. Uysal, and I. Altunba, “Cooperative Diversity for Intervehicular Communication: Performance Analysis and Optimization,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3301-3310, Sept. 2009.
[3]E. N. Gilbert, “Capacity of A Burst-Noise Channel,” Bell Syst. Tech. J., vol. 39, no. 9, pp. 1253–1265, Sept. 1960.
[4]E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,” Bell Syst. Tech. J., vol. 42, no. 5, pp. 1977–1997, Sept. 1963.
[5]P. Sadeghi, R. A. Kennedy, P. B. Rapajic and R. Shams, “Finite-state Markov Modeling of Fading Channels – A Survey of Principles and Applications,” IEEE Signal Processing Magazine, vol. 25, no. 5, pp. 57-80, Sept. 2008.
[6]R. H. McCullough, “The binary regenerative channel,” Bell Syst. Tech. J., vol. 47, pp. 1713-1735, Oct. 1968.
[7]B. D. Fritchman, “A binary channel characterization using partitioned Markov chains,” IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp. 221-227, Apr. 1967.
[8]R. G. Gallager, Information Theory and Reliable Communication. New York:Wiley, 1968.
[9]Q. Zhang and S. Kassam, “Finite-state Markov model for Rayleigh fading channels,” IEEE Trans. Commun., vol. 47, no. 11, pp. 1688–1692, Nov. 1999.
[10]G. K. Karagiannidis and N. C. Sagias, “N*Nakagami: A Novel Stochastic Model for Cascaded Fading Channels,” IEEE Trans. Veh. Technol., vol. 55, no. 8, pp. 1453-1458, Aug. 2007.
[11]C. S. Patel, G. L. Stuber, and T. G. Pratt, “Simulation of Rayleigh-Faded Mobile-to-Mobile Communication Channels,” IEEE Trans., Vol. 53, no. 11, pp. 1876-1884 Nov. 2005.
[12]N. C. Beaulieu and C. Cheng, “Efficient Nakagami-m Fading Channel Simulation,” IEEE Trans. Veh. Technol, vol.54, pp.413 – 424, Mar. 2005.
[13]C. Cheng, A Nakagaim-m fading channel simulator, M. Sc. thesis, Dept. Elect. Comp. Eng., Queen’s Univ., Kingston, ON, Canada, 2000.
[14]I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. New York: Academic, 2000.
[15]H. Shin and J. H. Lee, “Performance Analysis of Space-Time Block Codes over Keyhole Nakagami-m Fading Channels,” IEEE Trans. Veh. Technol., vol. 53, no. 2, pp. 351–362, Mar. 2004.
[16]J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB, 4th ed.
[17]H. S. Wang and N. Moayeri, “Finite-state Markov channel-A useful model for radio communication channels,” IEEE Trans. Veh. Technol., vol. 44, no. 1, pp. 163–171,Feb. 1995.
[18]Y. Lee, M. Tsai, and S. Sou, “Performance of decode-and-forward cooperative communications with multiple dual-hop relays over Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2853-2859, Jun. 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔