(3.238.235.155) 您好!臺灣時間:2021/05/11 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:周鴻傑
研究生(外文):Hong-Jie Chou
論文名稱:多輸入多輸出正交分頻多工系統中利用選擇性映射與分部傳輸序列的混合式策略之降低峰均值功率比技術研究
論文名稱(外文):PAPR Reduction Techniques with Hybrid SLM-PTS Schemes for MIMO-OFDM Systems
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
口試委員:林嘉慶洪志偉
口試委員(外文):Jia-Chin LinJeih-Weih Hung
口試日期:2011-07-11
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:60
中文關鍵詞:峰均值功率比混合式策略多輸入多輸出正交分頻多工
外文關鍵詞:PAPRHybridMIMO-OFDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
正交分頻多工(OFDM)系統是利用多載波調變(MCM)技術來提供高速資料傳輸,但也存在著高峰均值功率比(PAPR)的缺點,這缺點會造成射頻功率放大器成本的增加。在本篇論文中,首先我們在多輸入多輸出(MIMO)正交分頻多工系統中提出一個解決的方法,使用結合式(mixed)分部傳輸序列(PTS)策略來達成結合個別式(individual)與並列式(concurrent)的架構,這策略是為了去調整峰均值功率比降低效能與旁資訊位元(side information)之間取得一個平衡點。
在降低峰均值功率比中常見的選擇性映射(SLM)以及分部傳輸序列,許多文章都有說明造成快速反傅立葉轉換(IFFT)個數的增加是因為相位旋轉序列以及子區塊數目的增加。因此我們提出數個混合選擇性映射與分部傳輸序列的方式來降低系統複雜度並且維持令人滿意地峰均值功率比降低效能。另外,我們提出的修正型混合式策略(modified hybrid)與傳統型混合式策略(conventional hybrid)相互比較,能夠有效降低系統複雜度並且又能得到優秀的峰均值功率比降低效能。此演算法是利用來自不同相位旋轉序列的子區塊彼此線性結合與互相交換來創造更多可供選擇的正交分頻多工序列,並且這方法不需要增加快速反傅立葉轉換的個數就能達成。最後,我們所提出的修正型混合式策略也可以順利地運用在多輸入多輸出正交分頻多工系統中,並且也有優秀的峰均值功率比降低效能。

Orthogonal frequency division multiplexing (OFDM) systems provide high data-rate transmission with multi-carrier modulation (MCM) techniques, but they still have to cope with the high peak-to-average power ratio (PAPR) problem, which increases the cost of the radio frequency power amplifier. For multiple-input multiple-output (MIMO) OFDM systems, in the beginning of this thesis, the mixed partial transmit sequence (PTS) strategy is employed for the integration of both individual and concurrent configuration in order to reduce the high PAPR for trade-off between system performance and side information.
For the PAPR reduction with selected mapping (SLM) and PTS schemes, a survey of the related papers has shown that the number of inverse fast Fourier transform (IFFT) would become large when the number of phase rotation sequences or sub-blocks is increased. Therefore, various hybrid SLM-PTS methods are employed to reduce system complexity and maintain acceptable performance. In addition, the modified hybrid scheme is proposed to obtain superior PAPR reduction performance and reduce system complexity compared with the conventional hybrid scheme. This algorithm consists of linear combination and exchange of the sub-blocks from two phase rotation signal sequences to create more alternative OFDM signal sequences without increasing the number of IFFT. Finally, our proposed modified hybrid scheme is successfully extended to the PAPR reduction of MIMO-OFDM systems with good system performance.

Abstract i
Contents ii
List of Tables iv
List of Figures v
1 Introduction 1
1.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History and Background . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 PAPR Problem in OFDM Systems . . . . . . . . . . . . . . . . . . . 9
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Basic Concepts of OFDM Systems 11
2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Time-Domain Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Characteristics of PAPR . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 PAPR Reduction of MIMO-OFDM Systems 19
3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Conventional SLM Scheme . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Conventional PTS Scheme . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Mixed PTS Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Individual PTS . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Concurrent PTS . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Mixed PTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Proposed Hybrid Algorithms 33
4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Conventional Hybrid Scheme . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Various Proposed Schemes . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Additional Hybrid Scheme . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Switching Hybrid Scheme . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Modified Hybrid Scheme . . . . . . . . . . . . . . . . . . . . . 41
4.4 Simulation Results and Complexity Analysis . . . . . . . . . . . . . . 43
4.5 Various Modified Hybrid Allocations . . . . . . . . . . . . . . . . . . 48
4.6 MIMO-OFDM Modified Hybrid Schemes . . . . . . . . . . . . . . . 50
5 Conclusions and Future Works 53
Bibliography 56
[1] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications,
Boston: Artech House, 2000.
[2] T. Hwang, C. Yang, G. Wu, S. Li and G. Y. Li, “OFDM and Its Wireless
Applications: A Survey,” IEEE Transactions on Vehicular Technology, Vol. 58,
No. 4, pp. 1673-1694, May 2009.
[3] H. G. Myung and D. J. Goodman, Single Carrier FDMA: A New Air Interface
for Long Term Evolution, Chichester, U.K.: J. Wiley & Sons, 2008.
[4] W. Y. Zou and Y. Wu, “COFDM: An Overview,” IEEE Transactions on Broad-
casting, Vol. 41, No. 1, pp. 1-8, Mar. 1995.
[5] O. Edfors, M. Sandell, J.-J. van de Beek, D. Landstr‥om and F. Sj‥oberg, “An
Introduction to Orthogonal Frequency-Division Multiplexing,” Division of Signal
Processing, Lule°a University of Technology, Lule°a, Sweden, Research Report No.
1997:03, pp. 1-50, 1997.
[6] L. Hanzo, M. Mn‥uster, B. J. Choi and T. Keller, OFDM and MC-CDMA for
Broadband Multi-User Communications, WLANs and Broadcasting, Hoboken,
N.J.: Wiley-IEEE Press, 2003.
[7] R. C. T. Lee, M.-C. Chiu and J.-S. Lin, Communications Engineering: Essentials
for Computer Scientists and Electrical Engineers, Singapore: Wiley-IEEE Press,
2007.
[8] J. G. Andrews, A. Ghosh and R. Muhamed, Fundamentals of WiMAX: Under-
standing Broadband Wireless Networking, Upper Saddle River, N.J.: Prentice
Hall, 2007.
[9] S. B. Weinstein, “The History of Orthogonal Frequency-Division Multiplexing,”
IEEE Communications Magazine, Vol. 47, No. 11, pp. 26-35, Nov. 2009.
[10] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,”
IEEE Journal on Selected Area in Communications, Vol. 16, No. 8,
pp.1451-1458, Oct. 1998.
[11] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space Time Coded for High Data
Rate Wireless Communication: Performance Analysis and Code Construction,”
IEEE Transactions on Information Theory, Vol. 44, No. 2, pp. 744-765, Mar.
1999.
[12] A. J. Paulraj, D. Gore, R. U. Nabar and H. B‥olcskei, “An Overview of MIMO
Communications−A Key to Gigabit Wireless,” Proceeding of the IEEE, Vol. 92,
No. 2, pp. 198-218, Feb. 2004.
[13] M. A. Jensen and J. W. Wallace, “A Review of Antennas and Propagation for
MIMO Wireless Communications,” IEEE Transactions on Antennas and Prop-
agation, Vol. 52, No. 11, pp. 2810-2824, Nov. 2004.
[14] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, New York:
Cambridge University Press, 2005.
[15] V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-Time Block Coding
for Wireless Communications: Performance Results,” IEEE Journal on Selected
Area in Communications, Vol. 17, No. 3, pp. 451-460, Mar. 1999.
[16] V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-Time Block Coding
from Orthogonal Designs,” IEEE Transactions on Information Theory, Vol. 45,
No. 5, pp. 1456-1467, Jul. 1999.
[17] E. Masoud, “Space-Time Block Coding for Wireless Communications,” Ph.D.
Thesis, University of Hertfordshire, Hertfordshire, England, Nov. 2008.
[18] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela, “VBLAST:
An Architecture for Realizing Very High Data Rates Over The Rich-
Scattering Wireless Channel,” Proceedings of International Symposium on Sig-
nals, Systems and Electronics (ISSSE 1998), Pisa, Italy, pp. 295-300, Oct. 1998.
[19] A. van Zelst, R. van Nee and G. A. Awater, “Space Division Multiplexing
(SDM) for OFDM Systems,” Proceedings of IEEE Vehicular Technology Con-
ference (VTC 2000), Tokyo, Japan, Vol. 2, pp. 1070-1074, May 2000.
[20] G. L. Stuber, J. R. Barry, S.W. McLaughlin, Ye (Geoffrey) Li, M. A. Ingram and
T. G. Pratt, “Broadband MIMO-OFDMWireless Communications,” Proceedings
of the IEEE, Vol. 92, No. 2, pp. 271-294, Feb. 2004.
[21] H. W. Yang, “A Road to Future Broadband Wireless Access: MIMO-OFDMBased
Air Interface,” IEEE Communications Magazine, Vol. 43, No. 1, pp. 53-60,
Jan. 2005.
[22] H. Bolcskei, “MIMO-OFDM Wireless Systems: Basics, Perspectives, and Challenges,”
IEEE Transactions on Wireless Communications, Vol. 13, No. 4, pp.
31-37, Aug. 2006.
[23] W. Zhang, X.-G. Xia, and K. B. Letaief, “Space-Time/Frequency Coding for
MIMO-OFDM in Next Generation Broadband Wireless Systems,” IEEE Trans-
actions on Wireless Communications, Vol. 14, No. 3, pp. 32-43, Jun. 2007.
[24] M. Jiang and L. Hanzo, “Multiuser MIMO-OFDM for Next-Generation Wireless
Systems,” Proceedings of the IEEE, Vol. 95, No. 7, pp. 1430-1469, Jul. 2007.
[25] S.-H. Han and J.-H. Lee, “An Overview of Peak-to-Average Power Ratio Reduction
Techniques for Multicarrier Transmission,” IEEE Transactions on Wireless
Communications, Vol. 12, No. 2, pp. 56-65, Apr. 2005.
[26] T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction
Techniques for OFDM Signals,” IEEE Transactions on Broadcasting, Vol. 54,
No. 2, pp. 257-268, Jun. 2008.
[27] R. B‥auml, R. F. H. Fischer and J. B. Huber, “Reducing the Peak-to-Average
Power Ratio of Multicarrier Modulation by Selected Mapping,” IEE Electronics
Letters, Vol. 32, No. 22, pp. 2056-2057, Oct. 1996.
[28] S. H. M‥uller, R. B‥auml, R. F. H. Fischer and J. B. Huber, “OFDM with Reduced
Peak-to-Average Power Ratio by Multiple Signal Representation,” Annals of
Telecommunications, Vol. 52, No. 1-2, pp. 58-67, Feb. 1997.
[29] S. H. M‥uller and J. B. Huber, “OFDM with Reduced Peak-to-Average Power
Ratio by Optimum Combination of Partial Transmit Sequences,” IEE Electronics
Letters, Vol. 33, No. 5, pp. 368-369, Feb. 1997.
[30] S. H. M‥uller and J. B. Huber, “A Novel Peak Power Reduction Scheme for
OFDM,” Proceedings of International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC’97), Vol. 3, Helsinki, Finland, pp. 1090-
1094, Sep. 1997.
[31] S. H. M‥uller and J. B. Huber, “A Comparison of Peak Power Reduction
Schemes for OFDM,” Proceedings of IEEE Global Telecommunications Confer-
ence (GLOBECOM ’97), Phoenix, Arizona, USA, pp. 1-5, Nov. 1997.
[32] S.-J. Heo, H.-S. Noh, J.-S. No and D.-J. Shin, “A Modified SLM Scheme with
Low Complexity for PAPR Reduction of OFDM Systems,” IEEE Transactions
on Broadcasting, Vol. 53, No. 4, pp. 804-808, Dec. 2007.
[33] P. A. Pushkarev, K. W. Ryu, K. Y. Yoo, Y. W. Park, “A Study on the PAR
Reduction by Hybrid Algorithm Based on the PTS and SLM Techniques,” Pro-
ceedings of the 57th IEEE Vehicular Technology Conference, Vol.2, pp. 1263-1267,
2003.
[34] T.-C Hsueh and J.-S Lin, “PAPR reduction techniques with hybrid SLM strategy
for MIMO-OFDM communication systems,” Proceedings of the 2010 National
Symposium on Telecommunications, Taoyuan, Taiwan, Dec. 1990.
[35] Y.-L. Lee, Y.-H. You, W.-G. Jeon, J.-H. Paik and H.-K. Song, “Peak-to-Average
Power Ratio in MIMO-OFDM Systems Using Selective Mapping,” IEEE Com-
munications Letters, Vol. 7, No. 12, pp. 575-577, Dec. 2003.
[36] M.-S. Baek, M.-J. Kim, Y.-H. You and H.-K. Song, “Semi-Blind Channel Estimation
and PAR Reduction for MIMO-OFDM System with Multiple Antennas,”
IEEE Transactions on Broadcasting, Vol. 50, No. 4, pp. 412-424, Dec. 2004.
[37] R. F. H. Fischer and M. Hoch, “Peak-to-Average Power Ratio Reduction in
MIMO OFDM,” Proceedings of IEEE International Conference on Communica-
tions (ICC 2007), Glasgow, United Kingdompp, pp. 762-767, Jun. 2007.
[38] J.-H. Moon, Y.-H. You, W.-G. Jeon, K.-W. Kwon, H.-K. Song, “Peak-to-Average
Power Control for Multiple-Antenna HIPERLAN/2 and IEEE802.11a Systems,”
IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp. 1078-1083, Nov.
2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔