王濟川, 郭志剛 (2004) Logistic迴歸模型-方法與應用: 五南出版社。
朱逸暉 (2009) 應用自組性演算法建構多階段信用風險評估模型。國立交通大學工業工程與管理學系碩士論文,新竹市。江怡慧 (2009) 台灣半導體業海外直接投資之整合模型。國立交通大學科技管理研究所博士論文,新竹市。行政院金融監督管理委員會 (2009a) 本國銀行備抵呆帳覆蓋率, http://www.banking.gov.tw/ftp/stat/coverage.xls。
行政院金融監督管理委員會 (2009b) 金融展望月刊3月。
吳佩珊 (2008) 建構台灣中小企業兩階段風險評估模型。國立交通大學工業工程與管理學系碩士論文,新竹市。吳達凱 (2007) 銀行業建立企業信用評等以管理授信信用風險之研究。東吳大學商學院企業管理學系碩士在職專班碩士論文,台北市。林大溱 (2003) 應用偏最小方差法及小波轉換於製程預測式錯誤診斷。國立臺灣大學化學工程學研究所碩士論文,台北市。陳英豪 (2005) 應用自組性演算法建構企業信用評等模型。國立交通大學工業工程與管理學系碩士論文,新竹市。萬哲鈺, 高崇瑋 (2003) 財務報表分析: 華泰文化事業公司。
銀行授信實務概要編輯委員會 (2006) 銀行授信實務概要: 財團法人台灣金融研訓院。
鄭光男 (2009) 金融機構管理者對中小企業之放款決策探討。國立交通大學工業工程與管理學系碩士論文,新竹市。龐中懿 (2004) 巴塞爾銀行監理委員會對銀行外部稽核規範之探討。元智大學會計研究所碩士論文,桃園縣。Altman, E. (1968). Discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609.
Altman, E., Haldeman, R., & Narayanan, P. (1977). Zeta analysis: a new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29-54.
Atiya, F. (2001). Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Transactions on Neutral Networks, 12(4), 929-935.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 71-111.
Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357-365.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295-336.
Collins, R. A., & Green, R. D. (1982). Statistical methods for bankruptcy forecasting. Journal of Economics and Business, 52-57.
Desai, V. S., Crook, J. N., & Overstreet, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37.
Dutta, S., & Shekhar, S. (1988). Bond rating: a nonconservative application of neural networks. Paper presented at the Proceedings of the IEEE International Conference on Neural Networks.
Edmister, R. O. (1972). An empirical test of financial ratio analysis for small business failure prediction. The Journal of Financial and Quantitative Analysis, 7(2), 1477-1493.
Fan, A., & Palaniswamiet, M. (2000). Selecting bankruptcy predictors using a support vector machine approach. Paper presented at the Proceedings of the International Joint Conference on Neural Networks.
Fukuda, S., Kasuya, M., & Akashi, K. (2009). Impaired bank health and default risk. Pacific-Basin Finance Journal, 17(2), 145-162.
Grunert, J., Norden, L., & Weber, M. (2005). The role of non-financial factors in internal credit ratings. Journal of Banking & Finance, 29(2), 509-531.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2008). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 120, 227-319.
Huang, Z., Chen, H. C., Hsu, C. J., Chen, W. H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems, 37(4), 543-558.
Hwang, R. C., Chung, H., & Chu, C. K. (2010). Predicting issuer credit ratings using a semiparametric method. Journal of Empirical Finance, 17(1), 120-137.
Kim, C. N., & McLeod, J. R. (1999). Expert linear models and nonlinear models of expert decision making in bankruptcy prediction: a lens model analysis. Journal of Management Information Systems, 16(1), 189-206.
Laitinen, E. K. (1999). Predicting a corporate credit analyst’s risk estimate by logistic and linear model. International Review of Financial Analysis, 97-121.
Lohmöller, J. B. (1989). Latent variable path modeling with partial least squares: Physica-Verlag.
Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models. Journal of Accounting Research, 22(1), 380-395.
Odom, M., & Sharda, R. (1990). Bankruptcy prediction using neural networks. Paper presented at the Proceedings of the IEEE International Conference on Neural Networks.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.
Rose, P. S., Andrews, W. T., & Giroux, G. A. (1982). Predicting business failure: a macroeconomic perspective. Journal of Accounting, Auditing & Finance, 6(1), 20-31.
Shin, K. S., Lee, T. S., & J, K. H. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127-135.
Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159-205.
Wold, H. (1975). Path model with latent variables: The NIPALS approach. Quantitative sociology: International perspectives on mathematical and statistical modeling, 307-357.
Wu, C. Y. (2004). Using non-financial information to predict bankruptcy: a study of public. International Journal of Management, 21(2), 194-201.