跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林詩婉
研究生(外文):Lin, Shih-Wan
論文名稱:沼氣中二氧化碳與甲烷氣體之最佳分離吸附劑探討
論文名稱(外文):Study of adsorbents for carbon dioxide and methane separation from biogas
指導教授:白曛綾
指導教授(外文):Bai, Hsunling
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院永續環境科技學程
學門:環境保護學門
學類:其他環境保護學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:沼氣溫室效應二氧化碳甲烷沸石
外文關鍵詞:biogasgreenhouseCO2methanezeolite
相關次數:
  • 被引用被引用:5
  • 點閱點閱:538
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
甲烷(CH4)與二氧化碳(CO2)均為溫室效應氣體,而沼氣中同時含有此兩種溫室氣體,以往沼氣因為缺乏經濟效益而任意排放至空氣中,造成溫室氣體濃度增加。而隨著國際間對溫室效應與新能源開發之日益重視,如果能發展出從沼氣中將CH4與CO2分離之技術,可以將沼氣濃縮純化,成為具高能源價值之甲烷燃料,並同時減少二氧化碳溫室氣體之排放,可謂一舉兩得。
研究篩選各種沸石,以進行從模擬沼氣中吸附CO2,而可使CH4氣體純化。本研究結果顯示適當的前處理可以有效提昇沸石之吸附容量,沸石的矽鋁比越低、比表面積越大及表面官能基含胺或鈉等,其對CO2之吸附量會較其它類沸石為佳,如在CO2吸附效率達80%時, CBV300、NaY及13X之吸附容量分別為73 mg/g、69 mg/g及44 mg/g。在成本考量下,因CBV300之售價過高,因此對較具成本效益與吸附量高的NaY及13X工業用沸石進行後續實驗測試探討。研究成果顯示,NaY及13X沸石會隨著溫度及溼度上升,而使其對CO2吸附量呈現下降的趨勢,另外隨著CO2濃度的上升,吸附量會成正比。以NaY與13X進行重複吸脫附測試,皆可穩定維持99%以上之吸附容量。由此可知,NaY及13X,在吸附CO2以分離出CH4上,應具有相當的開發潛力。

Biogas contains methane (CH4) and carbon dioxide (CO2) which belonged to greenhouse gas. In past, biogas which was less economic was arbitrarily discharged into the atmosphere, resulting in the increased concentration of the greenhouse gas. With the increasing attention on the greenhouse effect and development of novel energy, it is required to develop the new technologies separating the CO2 and CH4 from the biogas and the concentrated CH4 gas could be high-valuable fuels. Meanwhile, the reduction of CO2 emission could be achieved as well.
In this study, three different types of zeolites are utilized for the separation of CO2 and CH4. The results showed that appropriate temperature of the pretreatment process can significantly enhance the adsorption performance of the zeolites. In addition, the adsorptive performance can be also greatly enhanced of the zeolites with lower Si/Al ratios, higher specific surface area as well as the surface modification with amino functional groups. Adsorbents of CBV300, NaY and 13X could achieve 73mg/g, 69mg/g and 44mg/g of adsorption capacity, respectively, as the removal efficiency of CO2 was 80%. In the view of economic aspect, NaY zeolite with high adsorption capacity and low cost was extensively studied as an adsorbent for separating CO2 and CH4 instead of CBV300 zeolite which is more costly. The CO2 breakthrough tests showed that the adsorption capacity decreased with the increase of operational temperature and humidity. Besides, the adsorption capacity increases linearly with respect to the inlet concentration of CO2. Cyclic adsorption-desorption tests implied that NaY and 13X zeolites could be completely regenerated. As a result, NaY and 13X zeolites could be promising adsorbents for the separation of CH4 and CO2.

誌謝 1
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 沼氣特性 4
2.1.1 基本特性 4
2.1.2 燃燒特性 4
2.1.3 發酵溫度類型 5
2.2 沼氣中的溫室氣體 6
2.3 CCS技術簡介 7
2.3.1 化學吸收法 8
2.3.2 物理吸收法 8
2.3.3 化學吸附法 8
2.3.4 物理吸附法 9
2.3.5 冷凍分離法 9
2.3.6 薄膜分離法 9
2.3.7 固態化學吸收法 9
2.3.8 生物反應法 10
2.4 二氧化碳吸附捕獲 10
2.5 沸石特性 13
2.5.1 沸石的結構 14
2.5.2 沸石之選擇方向 15
2.5.3 沸石的應用 18
2.6 商用沸石吸附CO2之效能比較 21
2.7 濕度定義 23
2.8 台灣氣溫之趨勢 24
第三章 實驗方法與步驟 28
3.1 研究流程 28
3.2 實驗設備及藥品 30
3.2.1 實驗設備 30
3.2.2 實驗藥品 31
3.3 實驗方法 31
3.3.1 沸石的選擇與改質 33
3.3.2 沼氣成分模擬 33
3.3.3 系統架設 33
3.3.4 循環吸/脫附測試 34
3.3.5 沸石物理化學特性分析項目與方法 34
第四章 結果與討論 36
4.1 商業沸石對CO2吸附量比較 36
4.1.1矽鋁比對吸附量影響 39
4.2 沸石價位比較 40
4.3 前處理與脫附氣體種類之影響 41
4.4 填充吸附劑重量對CO2吸附量影響 42
4.5 沸石對CH4及CO2之吸附選擇性 43
4.6 脫附時間對後續CO2吸附量之影響 45
4.7 操作溫度對吸附量之影響 48
4.7.1 吸附溫度之影響 48
4.7.2 脫附溫度之影響 50
4.8 脫附氣流量對脫附之影響 52
4.9 相對溼度對吸附量之影響 54
4.10 進流濃度對吸附量之影響 58
4.11 材料熱穩定性分析 60
4.12 比表面積分析 61
4.13 循環吸附測試 62
第五章 結論與建議 64
5.1 結論 64
5.2 建議 65
參考文獻 66
附件一大氣壓下飽和濕空氣含水量對照圖
[1] 工業技術研究院, 沼氣利用系統參考手冊(草案), 經濟部能源局委託,民國99年。
[2] IPCC Special Report on Carbon dioxide Capture and Storage, Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost) http://www.ipcc.ch/activity/srccs/index.htm, Sep. 2005.
[3] IEA (2007) “Near-Term Opportunities for Carbon Dioxide Capture and Storage”, International Energy Agency -Carbon Sequestration Leadership Forum, Summary Report of the Global Assessments Workshop.
[4] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastav (2008) “Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program”, International Journal of Greenhouse Gas Control, 2: 9-2 0.
[5] U.S. ENVIRONMENTAL PROTECTION AGENCY (http://www.epa.gov/methane/scientific.html)
[6] IPCC 1995. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, United Nations Environment Programme, Organization for Economic Co-Operation and Development, International Energy Agency. Paris, France.
[7] Walton, K. S., Abney, M. B., LeVan, M. D., (2005). CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange”, Microporous and Mesoporous Mater., 91: 78–84.
[8] S. Li, J. L. Falconer, R. D. Noble (2008) “SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio”, Microporous and Mesoporous Materials, 110, 310–317.
[9] F. V. S. Lopes, C. A. Grande, A. M. Ribeiro, V. J. P. Vilar, J. M. Loureiro, and A. E. Rodrigues (2010) Effect of Ion Exchange on the Adsorption of Steam Methane Reforming Off-Gases on Zeolite 13X, J. Chem. Eng. Data, 55, 184–195.
[10] Y.-S. Bae, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, J. T. Hupp and R. Q. Snurr (2008), Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane, Chem. Commun., 4135–4137.
[11] Edelmann W. Biogas production and usage. In: Kaltschmitt M, Hartmann H, editors. Energy from biomass: basic principles, technologies and processes. Leipzig, Germany: Springer; 2001.
[12] 周孟津、張榕林、葡金印譯, ”沼氣實用技術”, 化學工業出版社,(2009) 282-290.
[13] 張全國譯, ”沼氣技術及其應用”, 化學工業出版社, 2005, Jun . 248. ISBN:7502569367
[14] 三加一能量科技股份有限公司-拯救地球~氣候變遷,比二氧化碳威力更強的溫室氣體http://www.theage.com.au/opinion/the-missing-link-in-the-garnaut-report-20080709-3cjh.html?page=-1 http://en.wikipedia.org/wiki/Methane
[15] Simpson, I. J., F. S. Rowland, S. Meinardi, and D. R. Blake (2006), Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane, Geophys. Res. Lett., 33, L22808, doi:10.1029/2006GL027330.
[16] T. M. Hill, J. P. Kennett, D. L. Valentine, Z. Yang, C. M. Reddy, R. K. Nelson, R. J. Behl, C. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation . Robert, and L. Beaufort (2006), vol 103, no37, 13570-13574
[17] Stewart, C., and Hessami, M. “A study of methods of carbon dioxide capture an sequestration-the Sustainability of a photosynthetic bioreactor approach”, Energy Conversion and Management, 2005, 46, pp. 403-420
[18] Balat, M., Balat, H., and Oz, C. “Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants”, Energy Sources, Part A, 2009, 31, 1473-1486
[19] White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., and Pennline, H. W. “Separation and capture of CO2 from large stationary sources and sequestration in geological formations – Coalbeds and deep saline aquifers”, Journal of the Air & Waste Management Association, 2003, Vol. 53(6), pp. 645-715
[20] Aaron, D. and Tsouris, C., “Separation of CO2 from flue gas: A review” Separation Science and Technology, 2005, Vol.40(1-3), pp.321-348
[21] Chang, C. W., Tontiwachwuthikul, P. “A Decision Support System for Solvent of CO2 Separation Process” Energy Conversion, 1996, Vol. 37, pp.-941-946
[22] Song, C. “Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing”, Catalysis Today, 2006, Vol. 115, pp. 2-32
[23] Gray, M. L., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., and Stevens, R. W. “Improved immobilized carbon dioxide capture sorbents” Fuel Processing Technology, 2005, Vol.86, pp.1449-1455
[24] 洪瑛鍈、藍啟仁,“物理方法固定二氧化碳的現況” 台電工程月刊,民國90年,第629期,pp.76~90
[25] Livengood, C. D., Doctor, R. D., Molburg, J. C., Thimmapuram, P., and Berry, G. F. “The Potential for Control of Carbon Dioxide Emissions from Integrated Gasification/Combined-Cycle Systems” the 87th Annual Meeting & Exhibition of A & WMA Conference, 1994
[26] Granite E. J., and O’Brien, T. “Review of novel methods for carbon dioxide separation from flue and fuel gases” Fuel Processing Technology, 2005, Vol. 86(14-15), pp. 1423-1434
[27] Paul, S., Ghoshal, A. K., Mandal, B. “Theoretical studies on separation of CO2 by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC)”, Chemical Engineering Joural, 2008, Vol.144, pp.352-360
[28] F. Zheng, D. N. Tran, B.J Busche, G. E.Fryxell, R. S. Addleman, T. S. Zemanian and C. L. Aardahl., Ind. Eng. Chem. Res. (2005) 44, 3099-3105.
[29] Siriwardane, R. V .; Shen, M. S.; Fisher, E. P.; Poston, J. A. Energy Fuels 2001, 15,279-284
[30] Siriwardane, RV, Shen MS, Fisher EP, Energy & Fuels (2005) 19 (3): 1153-1159
[31] Peter J. E. Harlick and Abdelhamid Sayari., Ind. Eng. Chem. Res. (2006) 45, 3248-3255.
[32] Przepiorski, J. , Skrodzewicz, M. and Morawski, A.W. Applied Surface Science, (2004) 225: 235.
[33] Gao, W., Butler, D. and Tomasko, D.L., Langmuir (2004) 20, 8083-8089
[34] Cinke, M. , Charles, J. L., W., Bauschlicher Jr., Ricca, A. And Meyyappan, M. (2003) Chemical Physics Letters 376: 761.
[35] C. Lu , H. Bai, B. Wu, F. Su, and J. F. Hwang, Energy & Fuels, (2008) 22, 3050-3056
[36] P.J.E. Harlick, F.H. Tezel. Separation science and technology, (2002)37,33-60
[37] P.J.E. Harlick, F.H. Tezel. Separation and purification technology, (2003)33,199-210
[38] P.J.E. Harlick, F.H. Tezel. Micro. and Meso. Mater, (2004)76,71-79
[39] R. Chatti, A. K. Bansiwal, J. A. Thote, V. Kumar, P. Jadhav, S. K. Lokhande, R. B. Biniwale, N. K. Labhsetwar, S. S. Rayalu (2009) “Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies” Micro. and Meso. Mater.,121, 84–89.
[40] A. R. Millward and O.M. Yaghi., J. Am. Chem. Soc., (2005) 127, 17998-17999
[41] Walton ,K. S., Millward, A.R., Dubbeldam, D., Frost, H., Low, J. J., Yaghi, O. M. and Snurr, R. Q., J. Am. Chem. Soc. (2008) 130: 406-407.
[42] Walton, K. S., Abney, M. B., LeVan, M. D. Micro. and Meso. Mater, (2006)91,78-84
[43] 趙桂蓉,“冒泡泡的分子篩──沸石在觸媒界” 科學月刊,民國80年,第250期
[44] D. W. Breck, (1974)“Zeolite Molecular Sieves” , Wiley:New York
[45] 許欣潔,“沸石吸附材料製備及其運用於水中有機污染物之去除”,嘉南藥理科技大學 環境工程與科學系 碩士學位論文,民國96年7月
[46] D. M. Ruthven, (1984)“Principles of Adsorption and Adsorption Process”, John Wiley & Sons, New York
[47] Lee, J.S., Kim, J.H., Kim, J.T., Suh, J.K., Lee, J.M., and Lee, C.H., (2002)“Adsorption Equilibria of CO2 on Zeolite 13X and Zeolite X/Activated Carbon Composite”, J. Chem. Eng., Vol. 47, pp.1237-1242.
[48] Harlick, P. J. E., Tezel, F. H., (2004)An experimental adsorbent screening study for CO2 removal from N2. Microporous . Mesoporous Mater. 76, 71-79
[49] Chatti, R., Bansiwal, A. K., Thote, J. A., Kumar, V., Jadhav, P., Lokhande, S. K., Biniwale, R. B., Labhsetwar, N. K., and Rayalu, S. S., (2009)“Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies.” Microporous and Mesoporous Materials, Vol. 121, pp. 84-89.
[50] Xu, X., Song, C., Andresen, J. M., Miller, B. G., Scaroni, A. W., (2003) Microporous and Mesoporous Materials, Vol. 62, pp.29-45.
[51] Yue, M.B., Chun. Y., Dong, X., Zhu, J.H. (2006) “CO2 capture by as-prepared SBA-15 with occluded organic template”. Advan. Funct. Mater. Vol.16, pp.1717-1722.
[52] 陳文發,“改質奈米碳管及中孔洞矽材吸附二氧化碳之研究” 國立中興大學 環境工程系 碩士論文,民國97年7月
[53] 郭室均,“四乙烯戊胺改質矽材吸附二氧化碳之研究” 國立中興大學 環境工程系 碩士論文,民國98年6月
[54] 張白青,“固態核磁共振於沸石Y經脫鋁及氟化後之鑑定與其機制探討” 國立中央大學 化學所 碩士論文,民國95年7月
[55] 戚啟勳(1974)普通氣象學,國立編譯館,351頁
[56] 吳碧蓮,“奈米碳管、活性碳與沸石吸附二氧化碳溫室氣體之研究” 國立中興大學 環境工程系 碩士論文,民國96年6月
[57] 交通部中央氣象局,“全球平均溫度及台灣測站長期趨勢監測報告” 氣候監測報告,民國98年
[58] Bai, H., Yeh, A.C. (1997) “Removal of CO2 Greenhouse Gas by Ammonia Scrubbing.” Ind.& Eng. Chem. Res., Vol. 36, No. 6 (June), pp.2490-2493
[59] Yeh, A. C. and Bai, H., “Comparison of Ammonia and Monoethanolamine Solvents to Reduce CO2 Greenhouse Gas Emissions”, The Science of the Total Environment, Vol.24, pp.121-133, 1999.
[60] C. Lu, H. Bai, F. Su, W. Chen, J. F. Hwang and H.-H. Lee (2010) “Adsorption of CO2 from Gas Streams via Mesoporous Spherical-Silica Particles”, J. Air & Waste Management Association, April, 60:489-496.
[61] Y.-T. Chen; M. Karthik; H. Bai* (2009) “Modification of CaO by Organic Alumina Precursor for Enhancing Cyclic Capture of CO2 Greenhouse Gas”, ASCE J. Environmental Engineering, 135(6): 459-464.
[62] C. Lu , H. Bai, B. Wu, F. Su, and J. F. Hwang (2008) “A Comparative Study of CO2 Capture by Carbon Nanotubes, Activated Carbons and Zeolites”, Energy & Fuels, 22, 3050-3056
[63] H. Bai and M. Karthik (2010) “CO2 Greenhouse Gas Formation and Capture” in “Handbook on Combustion”, Vol. II, Chap. 13, Editors: M. Lackner, F. Winter and A. Agarwal, Wiley-VCH. ISBN:978-3-527-32449-1.
[64] P. I. Ravikovitch., A. V. Neimark. Langmuir. 2002, 18, 1550-1560.
[65] P. I. Ravikovitch., D. Wei., W. T. Chueh., G. L. Haller., A. V. Neimark. J. Phy.(1997) Chem. B. 101,3671-3679
[66] Satterfield C.N., (1993) “Heterogeneous Catalysis in Industrial Practice”, 2nd Edit, McGraw-Hill, Inc., 131-174.
[67] 吳麗詩,"疏水性沸石對單成分與雙成分揮發性有機物吸附機制之研究",國立雲林科技大學 環境與安全與衛生工程系 碩士論文,民國94年
[68] Sakadjian, B. B. Iyer, M. V., Gupta, H., and Fan, L.–S. “Kinetics and Structural Characterization of Calcium-Based Sorbents Calcined under Subatmosphere Conditions for the High-Temperature CO2 Capture Process” Ind. Eng. Chem. Res.,2007, Vol.46, pp.35-42
[69]Hughes, R.W., Lu, D., Anthony, E.J., and Wu, Y. (2004)"Improved Long-Term Conversion of Limestone-Derived Sorbents for In Situ Capture of CO2 in a Fluidized Bed Combustor." Ind. Eng.Chem. Res., 43: 5529-5539.
[70] Su, F., Lu, C., Kuo, S.-C., Zeng, W., (2010) "Adsorption of CO2 on amine-functionalized Y-type zeolites "Energy Fuels., 24, 1441-1448
[71] Perry, Robert H./ Green, Don W. (1999) “CO2 Greenhouse Gas Formation and Capture” in “Perry’s Chemical Engineers’ Handbook”, McGraw-Hill Osborne Media
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top