(3.237.178.91) 您好!臺灣時間:2021/03/07 15:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李其峰
研究生(外文):Lee, Chi-Feng
論文名稱:新穎Cu 氧化物奈米結構之合成、X 光繞射模擬分析及其異質接面光觸媒之應用
論文名稱(外文):Novel copper relative oxide nano-structures: synthesis,X-ray simulation characterizations and heterojunction photocatalytic properties
指導教授:陳軍華陳軍華引用關係
指導教授(外文):Chen, Chun-Hua
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:86
中文關鍵詞:氧化銅氧化鋅光催化XRD 繞射模擬
外文關鍵詞:CuOZnOphotocatalyticXRD simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用化學還原法,製備各式新穎p-type之Cu2O及CuO奈米結構、n-type之ZnO奈米結構、及其混合之p-n異質接面奈米結構,並探討此些奈米結構對光觸媒特性之影響。
在p-type之Cu2O及CuO奈米結構合成方面,Cu2O係利用典型Cu金屬奈米粒子製程於水中自然氧化所得,其形貌為圓球形,尺寸約為5 nm。其後再藉由各種氧化參數之改變,在液相水介質之中,將製備所得之零維Cu2O奈米粒子,轉變成為各式一維、二維之CuO奈米結構,包含鹿角狀、線形與片狀等等形貌,其長約100 ~350 nm,寬約15~120 nm不等。其中,並發現一維短柱狀Cu(OH)2奈米結構之存在,其長約數μm,寬約70 nm。
在n-type之ZnO奈米結構合成方面,藉由製程參數之調控,製備出一維單晶柱、八面體結構及三維花形結構。並利用懸浮零維Cu2O奈米粒子作為基材,使ZnO奈米結構直接成長於其上,合成出CuO/ZnO之 p-n 異質接面結構。實驗結果證實,透過ZnO與CuO的結合,可延長其受光激發電子與電洞的分離時間,使其光催化效果較單純混合ZnO與CuO奈米結構為佳,以線形CuO/花形ZnO複合材料為例,當使用Rhodamine B (Rh-B)作為染料時,其光催化效能可比直接混合兩材料提昇45%左右。在此些CuO/ZnO異質接面奈米結構中,以線形CuO/柱狀ZnO複合材料的光催化效果為最佳。
由於奈米粒子經常與其本身塊材之形貌有所不同,故本論文針對一些常見的奈米粒子形貌,進行XRD繞射光譜的理論模擬,在金屬奈米粒子方面包括球形、方形、十面體與二十面體奈米粒子,在氧化物方面則包含球形、方形與線形。從模擬數據與實驗數據的分析比對,歸納出由XRD繞射峰的強度比快速得知奈米粒子形貌之方法。

This thesis contains two main topics: heterojunction nano-structures and photocatalysts. First, a series of novel p-type Cu2O and CuO, n-tpye ZnO, and their mixed p-n heterojunction nano-structures were newly prepared mainly by chemical reduction method. Second, the nano-structures obtained were applied as photocatalysts and the nano-structural influence on photocatalytic performance was compared and discussed.
Cu2O was prepared by spontaneous oxidation of spherical Cu nano-particles (~5 nm in diameter) in water at room temperature. Several novel CuO nano-structures were then simply synthesized by the further oxidation of the prepared Cu2O nano-particles in aqueous solutions. Accompanying with the oxidation process, a distinct morphological transformations from zero-dimensional (Cu2O) to one-dimensional or two-dimensional (CuO) was found and its mechanism is considered as the key point to produce such a variety of CuO nanostructures including buckhorn-like rods, short rods, and flakes, in this work. In addition, one-dimensional Cu(OH)2 nano-structures (~100 nm long and 15 nm in width) can also be found under some oxidation conditions.
ZnO nano-structures including one-dimensional single crystal rods, octahedra and three-dimensional flower-like assemblies were synthesized. In addition, using suspended Cu2O nano-particles as substrates, ZnO nano-structures could directly grow on Cu2O to form a p-n heterojunction ZnO/CuO composite. Our photocatalytic experiment has proved that the p-n heterojunction ZnO/CuO composite prepared indeed presents at least 45% enhancement of the degradation efficiency of organic dye, Rhodamine B, comparing with the simple mixture of CuO and ZnO nano-structures.
Nano-structures generally demonstrate a variety of morphologies in comparison with bulk materials. In this thesis, we illustrated a series of XRD analysis with theoretical calculations to distinguish some frequently observed morphologies of nano-particles, including cube, sphere, decahedron and icosahedron for metals and sphere, cube and rod for oxides.

摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 文獻回顧 3
2-1 奈米粒子性質 3
2-2 CuO奈米結構製備方法 4
2-2-1 化學合成法 4
2-2-2 物理合成法 5
2-3 CuO奈米結構之應用 7
2-3-1 催化觸媒 7
2-3-2 氣體感測 7
2-3-3 場發射元件 7
2-4 Cu、Cu2O、CuO、ZnO之結晶構造 9
2-4-1 Cu 9
2-4-2 Cu2O 9
2-4-3 CuO 10
2-4-4 ZnO 10
2-5 光催化反應 12
2-5-1 光催化反應原理 12
2-5-2 半導體光催化觸媒 12
2-5-3 Rhodamine B染料簡介 14
2-6 光催化性質改善方法 17
2-6-1 材料能隙調整 17
2-6-2 材料形貌控制 19
2-6-3 材料表面改質 19
第三章 實驗內容與方法 21
3-1 實驗設備 21
3-2 實驗藥品 22
3-3 實驗方法與步驟 22
3-3-1 Cu2O奈米粒子製備流程 23
3-3-2 CuO、Cu(OH)2奈米結構製備流程 24
3-3-3 ZnO 奈米結構製備流程 25
3-3-4 CuO/ZnO 奈米結構製備流程 26
3-3-5 光催化實驗流程 27
3-4 奈米結構之結構鑑定與光譜分析 28
3-4-1 X光繞射(XRD) 28
3-4-2 紫外光-可見光吸收光譜(UV-vis absorption spectra) 29
3-4-3 掃描式電子顯微鏡(SEM) 30
3-4-4 X-Ray能量散佈分析儀(EDS) 31
3-4-5 穿透式電子顯微鏡(TEM) 31
第四章 結果與討論 32
4-1 Cu2O 32
4-2 CuO 36
4-2-1 鹿角狀CuO 36
4-2-2 線形CuO (Type I) 38
4-2-3 短柱狀Cu(OH)2 40
4-2-4 水草狀Cu(OH)2/CuO 43
4-2-5 片狀CuO 45
4-2-6 線形CuO (Type II) 47
4-3 ZnO 51
4-3-1 八面體ZnO 53
4-3-2 花形ZnO 56
4-4 CuO/ZnO 57
4-4-1 線形CuO/柱狀ZnO 57
4-4-2 線形CuO/花形ZnO 60
4-5 光催化測試 62
第五章 結論 66
參考文獻 67
附錄一 理論XRD模擬計算 72
附錄二 Cu2O之理論XRD模擬數據 81
附錄三 CuO之理論XRD模擬數據 84


[1] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemannt, Chem. Rev. 95 (1995) 69.
[2] Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 3 (2003) 955.
[3] C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, J. Ma, J. Phys. Chem. B 108 (2004) 17825.
[4] C. L. Carnes, J. Stipp, K. J. Klabunde, Langmuir 18 (2002) 1352.
[5] A. Galembeck, O. L. Alves, Synth. Met. 102 (1999) 1238.
[6] M. A. Brookshier, C. C. Chusuei, D. W. Goodman, Langmuir 15 (1999) 2043.
[7] M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 116 (1996) 7401.
[8] S. C. Ray, Sol. Energy Mater. Sol. Cells. 68 (2001) 307.
[9] M. Schurr, M. Seidl, A. Brugger, H. Voit, Thin Solid Films 342 (1999) 266.
[10] T. You, O. Niwa, M. Tomita, H. Ando, M. Suzuki, S. Hirono, Electrochemistry Communications 4 (2002) 468.
[11] U.D. Lanke, M. Vedawyas, Nucl. Instr. and Meth. in Phys. Res. B 155 (1999) 97.
[12] A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, P. K. Patanjali, Appl. Phys. Lett. 84 (2004) 1180.
[13] T. Maruyama, Sol. Energy Mater. Sol. Cells 56 (1998) 85.
[14] X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, D. Y. Song, J. Phys. Chem. B 108 (2004) 5547.
[15] S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J. M. Tarascon, J. Electrochem. Soc.148 (2001) 285.
[16] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, Appl. Phys. Lett. 83 (2003) 3383.
[17] J. Chen, S. Deng, N. Xu, W. Zhang, X. Wen, S. Yang, Appl. Phys. Lett. 83 (2003) 746.
[18] J. B. Reitz, E. I. Solomon, J. Am. Chem. Soc. 120 (1998) 11467.
[19] J. A. Switzer, H. M. Kothari, P. Poizot, S. Nakanishi, E. W. Bohannan, Nature 425 (2003) 490.
[20] H. H. Voge, C. R. Adams, Adv. Catal. 17 (1967) 151.
[21] T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, Chem. Lett. (1991) 575.
[22] V. Lantto, P. Romppainen, T. S. Rantala, S. Leppavuori, Sens. Actuators B 4 (1991) 451.
[23] L. Jianping, W. Yue, G. Xiaoguang, M. Quing, W. Li, H. Jinghong, Sens. Actuators B 65 (2000) 111.
[24] R. B. Vasiliev, M. N. Rumyantseva, S. E. Podguzova, A. S. Ryyzhikov, L. I. Ryabova, A. M. Gaskov, Mater. Sci. Eng. B 57 (1999) 241.
[25] D. J. Yoo, J. Tamaki, S. J. Park, N. Miura, N. Yamazoe, J. Appl. Phys. 34 (1995) 455.
[26] A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, P. K. Patanjali, Appl. Phys. Lett. 84 (2004) 1180.
[27] I. K. Suh, H. Ohta, Y. Waseda, Annales Academiae Scientiarum Fennicae, Series A6: Physica 233 (1967) 1.
[28] M. L. Foo, Q. Huang, J. W. Lynn, W. L. Lee, T. Klimczuk, I. S. Hagemann, N. P. Ong, R. J. Cava, Journal of Solid State Chemistry 179 (2006) 563.
[29] A. Stergiou, I. Kerasiotis,C. Stergiou, Journal of Optoelectronics and Advanced Materials 9 (2007) 1772.
[30] S. Cui, W. Feng, H. Hu, Z. Feng, Y. Wang, Journal of Alloys Compd. 476 (2009) 306.
[31] L. S. Zhang, K. H. Wong, D. Q. Zhang, C. Hu, J. C. Yu, C. Y. Chan, P. K. Wong, Environ. Sci. Technol. 43 (2009) 7883.
[32] 賴宏仁,工研院,Unique Properties of Nanomaterials 奈米材料的特殊性質(I).
[33] F. Chen, J. Zhao, H. Hidaka, International Journal of Photoenergy 5 (2003) 209.
[34] A. Mintaz, J. P. Y. Kao, R. Y. Tsieng, J. Biol. Chem. 264 (1989) 8171.
[35] P. Wilhelm, D. Stephan, J. Photochem. Photobiol. A: Chem. 185 (2007) 19.
[36] K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, J. Phys. Chem. A 113 (2009) 10024.
[37] J. Zhao, T. Wu, K. Wu, K. Okikawa, H. Hidaka, N. Serpone, Environ. Sci. Technol. 32 (1998) 2394.
[38] G. Liu, T. Wu, J. Zhao, H. Hidaka, and N. Serpone, Environ. Sci. Technol. 33 (1999) 2081.
[39] T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 103 (1999) 4862.
[40] W. Choi, A. Termin,M. R. Hoffmann J. Phys. Chem. 98 (1994) 13669.
[41] K. Wang, J. Zhang, L. Lou, S. Yang, Y. Chen, J. Photochem. Photobiol. A: Chem. 165 (2004) 201.
[42] G. Liu, L. Wang, C. Sun, X. Yan, X. Wang, Z. Chen, Sean C. Smith, H. M. Cheng, G. Q. Lu, Chem. Mater. 21 (2009) 1266.
[43] J. H. Luo, P. A. Maggard, Adv. Mater. 18 (2006) 514.
[44] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440 (2006) 295.
[45] D. F. Wang, Z. G. Zou, J. H. Ye, Chem. Mater. 17 (2005) 3255.
[46] J.P. Yasomanee, J. Bandara, Sol. Energy Mater. Sol. Cells 92 (2008) 348.
[47] H. L. Xia, H. S. Zhuang, T. Zhang, D. C. Xiao, Journal of Environmental Sciences 19 (2007) 1141.
[48] M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, J. Phys. Chem. B 110 (2006) 20211.
[49] H. Xu, W. Wang, W. Zhu, J. Phys. Chem. B 110 (2006) 13829.
[50] L. Xu, L. P. Jiang, J. J. Zhu, Nanotechnology 20 (2009) 045605.
[51] S. Link, M. A. El-Sayed, J. Phys. Chem. B 103 (1999) 8410.
[52] P. Wang, B. B.Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M. H. Whangbo, Angew. Chem., Int. Ed. 47 (2008) 7931.
[53] R. Jin, Y. C. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatzand, J. G. Zheng, Science 294 (2001) 1901.
[54] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am. Chem. Soc. 130 (2008) 1676.
[55] Y. Tian, T. Tatsuma, J. Am. Chem. Soc. 127 (2005) 7632.
[56] X. Jiang, T. Herricks, Y. Xia, Nano Lett. 2 (2002) 1333.
[57] S. H. Lee, Y. S. Her, E. Matijevic´, J. Colloid Interface Sci. 186 (1997) 193.
[58] R. J. Candal, A. E. Regazzoni, M. A. Blesa, J. Mater. Chem. 2 (1992) 657.
[59] M. Bitenc, G. Drazic, Z. C. Orel, Cryst. Growth Des. 10 (2010) 830.
[60] K. K. Haldar, T. Sen, A. Patra, J. Phys. Chem. C 112 (2008) 11650.
[61] S. K. Park, J. H. Park, K. Y. Ko, S. Yoon, K. S. Chu, W. Kim, Y. R. Do, Cryst. Growth Des. 9 (2009) 3615.
[62] C. S. Lao, P. X. Gao, R. S. Yang, Y. Zhang, Y. Dai, Z. L. Wang, Chem. Phys. Lett. 417 (2006) 358.
[63] Y. Dai, Y. Zhang, Z. L. Wang, Solid State Commun. 126 (2003) 629.
[64] C. X. Xu, X. W. Sun, J. Crystal Growth 277 (2005) 330.
[65] A. Guinier X-ray Diffraction in Cyrstals, Imperfect Crystals and Amorphous Bodies (Dover: New York) (1994).
[66] B. D. Hall, M Flüeli, R. Monot and J. P. Borel, Phys. Rev. B 43 (1991) 3906.
[67] N. Pinna, Prog. Colloid Polym. Sci. 130 (2005) 29.
[68] M. J. Yacamán, K. Heinenann, C. Y. Yang, H. Poppa, J. Cryst. Growth 47 (1979) 187.
[69] C. H. Chen, T. Yamaguchi, K. I. Sugawara, K. Koga, J. Phys. Chem. B 109 (2005) 20669.
[70] L. D. Marks, Surf. Sci. 150 (1985) 302.
[71] J. A. Ascencio, M. Pérez, M. José-Yacamán, Surf. Sci. 447 (2000) 73.
[72] J. A. Ascencio, C. Gutiérrez-Wing, M. E. Espinosa, M. Marín, S. Tehuacanero, C. Zorrilla, M. José-Yacamán, Surf. Sci. 396 (1998) 349.
[73] P. A. Buffat, Mat. Chem. Phys. 81 (2003) 368.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔