(3.238.186.43) 您好!臺灣時間:2021/03/01 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李順華
研究生(外文):Li, Shuang-Hua
論文名稱:以奈米點陣列操控肺腫瘤細胞纖維蛋白溶解、細胞貼附和存活能力
論文名稱(外文):Suppression of fibrinolytic activity, cell adhesion, and viability of Lewis Lung Carcinoma cells by nanodot arrays
指導教授:黃國華黃國華引用關係
指導教授(外文):Huang, Guewha Steven
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:47
中文關鍵詞:奈米點陣列小鼠肺腫瘤細胞細胞骨架形成細胞板狀偽足纖維蛋白溶解
外文關鍵詞:nanodot arraysLL/2 cellscytoskeletal organizationlamellipodiavinculinReal-Time RT-PCRfibrinolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
材料在生物工程的應用上扮演重要的角色。了評估奈米表面對細胞的影響,本研究將小鼠肺腫瘤細胞培養在10至200奈米點陣列上,奈米點陣列結構是藉由陽極氧化鋁製程在鉭化氮表面的矽晶圓上製備而成。奈米點陣列的大小對細胞的生長、增生、附著、骨架形成和基因表現是我們主要研究重點。
經由實驗結果發現,當表面細胞密度達到飽和,小鼠肺腫瘤細胞在五十奈米的點陣列上仍有最佳的存活率,細胞培養七十二小時在100和200奈米的點陣列上數量減少了34.7%和46.71%。細胞培養在50奈米點表面有最大的貼附面積、較多的細胞板狀偽足的延展和最快的成長速率,在100和200的奈米點上發現細胞有類似凋亡和貼附面積明顯減少的現象產生。利用免疫螢光染色探討細胞vinculin和actin filament在奈米表面的分佈,發現50奈米點會促進細胞貼附和細胞骨架的形成,在100和200奈米點會阻礙焦點附著以及細胞骨架的形成。
我們更進一步使用Real-Time RT-PCR對細胞的基因作分析,發現在100以及200奈米點上,細胞分泌Chemokines (CCL-2/MCP-1 and CCL-3/MIP-1α), Cytokines (IL-10, TNF-α, and IL-6) 與貼附分子(VEGF)有明顯的增加,在50奈米點上,細胞表現較高的PAI-1,我們推測100和200的奈米點會誘發細胞產生發炎反應、氧化壓力以及凋亡。最後利用Western blot來分析蛋白質的表現,細胞在50奈米點上有明顯的vinculin和PAI-1的表現,結果顯示50奈米點會促進細胞貼附良好且會抑制細胞纖維蛋白溶解。
實驗結果顯示利用奈米點陣列來調控小鼠肺腫瘤細胞生長與尺寸大小有關。細胞在50奈米點上具有最佳的存活率、型態、貼附和極細微的纖維蛋白溶解;細胞生長在100奈米以上的奈米點表面會阻礙細胞的生長情形與細胞板狀偽足的延展。往後可以利用此研究的結果得知表面結構的重要性在於對細胞行為有顯著的影響,我們的裝置將會在組織工程與癌症治療上扮演一個快速又方便的工具。

Biomaterials play an important role in bioengineering applications. To evaluate cellular response to a nanoscaled surface, Mouse Lewis Lung Carcinoma (LL/2) cells were cultured onto Nanodot arrays with dot diameters ranging from 10 to 200-nm. The Nanodot arrays were fabricated by anodic aluminum oxide (AAO) processing on TaN-coated wafers. The size-dependent effect of Nanodot arrays on cell growth, corresponding to cell proliferation, cell adhesion, cytoskeletal organization, and gene expression is the main point of our study.
Optimized growth occurred when LL/2 cells were cultured on nanodot arrays with dot size at 50-nm, on which maximum viability was maintained even when the cell density reached saturation. Nanodots of 100 and 200-nm prevented viable growth of LL/2 cells with 34.7% and 46.71% reduction at 72 hours, respectively. Cells seeded on 50-nm nanodots showed cell morphology with largest surface area, more extended lamellipodia, and fastest growth rate. Apoptosis-like growth was observed on 100 and 200-nm nanodots with significant reduction in the surface area. Immunostaining was performed against vinculin and actin filaments indicated that 50-nm nanodots promote cell adhesion and cytoskeletal organization. 100-nm nanodots retarded the formation of focal adhesion while 200-nm nanodots inhibited the organization of cytoskeleton.
Then, we carry out an in vitro gene function study using quantitative Real-Time RT-PCR. Levels of mRNAs encoding Chemokines (CCL-2/MCP-1 and CCL-3/MIP-1α), Cytokines, (IL-10, TNF-α, and IL-6) and Adhesion molecules (VEGF) increased significantly on the 100 and 200-nm nanodots. The mRNA encoding fibrinolysis molecule (PAI-1) has high expression on 50-nm nanodots. The most cells seeded on 100 and 200-nm nanodots induced inflammatory responses, oxidative stress, and aopotosis. Finally, utilizing Western blot analyzed protein expression. High expression of vinculin and PAI-1 were occurred on 50-nm diameter nanodots. It indicated that 50-nm nanodots have good focal adhesion and suppress fibrinolysis with cells.
The results presented here illustrate the ability of nanodot arrays to modulate the growth of LL/2 cells is size-dependent. Optimized growth with the best viability, morphology, adhesion, and imperceptible fibrinolysis occurred at size of 50-nm. Retardation of growth and lamellipodia extension were observed when the dot size was larger than 100-nm. The important of a surface characterization may have a significant effect on cellular behavior. Our device will serve as a convenient and fast tool for tissue engineering and cancer treatment.

1. Introduction 1
3. Materials and methods . 8
3.1. Chemicals ... 8
3.2. Fabrication of nanodot arrays . 8
3.3. Cell culture . 9
3.4 The cell viability assay .. 9
3.5. Scanning Electron Microscopy .. 9
3.6. Immunostaining of vinculin and actin filament . 10
3.7. Quantitative Real-Time RT-PCR . 10
4. Results .. 14
4.1 Nanotopography modulated cell viability and cell density 14
4.2 Nanotopography modulated cell morphology 20
4.3 Nanotopography modulated cell adhesion and cytoskeletal organization of cells .. 26
4.4 Nanotopography influenced gene expression . 31
4.5 Nanotopography influenced vinculin and PAI-1 expression 35
5. Discussion 37
6. Conclusions .. 40
1. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Science 1997, 276, (5317), 1425-1428.
2. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Biotechnology Progress 1998, 14, (3), 356-363.
3. Abrams, G.; Goodman, S.; Nealey, P.; Franco, M.; Murphy, C. Cell and Tissue Research 2000, 299, (1), 39-46.
4. Sniadecki, N.; Desai, R.; Ruiz, S.; Chen, C. Annals of biomedical engineering 2006, 34, (1), 59-74.
5. Gumbiner, B. The Journal of Cell Biology 2000, 148, (3), 399.
6. Mrksich, M. Current opinion in chemical biology 2002, 6, (6), 794-797.
7. Plummer, S.; Wang, Q.; Bohn, P.; Stockton, R.; Schwartz, M. Langmuir 2003, 19, (18), 7528-7536.
8. Friedl, P.; Wolf, K. Nature Reviews Cancer 2003, 3, (5), 362-374.
9. Humphries, J.; Byron, A.; Humphries, M. Journal of Cell Science 2006, 119, (19), 3901.
10. Reuning, U.; Magdolen, V.; Wilhelm, O.; Fischer, K.; Lutz, V.; Graeff, H.; Schmitt, M. International journal of oncology 1998, 13, (5), 893.
11. Stetler-Stevenson, W.; Aznavoorian, S.; Liotta, L. Annual review of cell biology 1993, 9, (1), 541-573.
12. Hung, Y.; Pan, H.; Tai, S.; Huang, G. Lab on a Chip 10, (9), 1189-1198.
13. Choi, C.; Hagvall, S.; Wu, B.; Dunn, J.; Beygui, R. Biomaterials 2007, 28, (9), 1672-1679.
14. Cooke, M.; Phillips, S.; Shah, D.; Athey, D.; Lakey, J.; Przyborski, S. Cytotechnology 2008, 56, (2), 71-79.
15. Cukierman, E.; Pankov, R.; Stevens, D.; Yamada, K. Science's STKE 2001, 294, (5547), 1708.
16. Zhang, L.; Hemraz, U.; Fenniri, H.; Webster, T.
17. Zhang, L.; Rodriguez, J.; Raez, J.; Myles, A.; Fenniri, H.; Webster, T. Nanotechnology 2009, 20, 175101.
18. Goransson, A.; Arvidsson, A.; Currie, F.; Franke-Stenport, V.; Kjellin, P.; Mustafa, K.; Sul, Y.; Wennerberg, A. Journal of Biomedical Materials Research Part A 2009, 88, (4), 1037-1047.
19. Hansen, T. 2006.
20. Park, J.; Bauer, S.; Schlegel, K.; Neukam, F.; von der Mark, K.; Schmuki, P. Small 2009, 5, (6), 666-671.
21. Park, J.; Bauer, S.; Schmuki, P.; von der Mark, K. Nano Lett 2009, 9, (9), 3157-3164.
22. Rowley, J.; Mooney, D. Journal of Biomedical Materials Research Part A 2002, 60, (2), 217-223.
23. Arnold, M.; Cavalcanti-Adam, E.; Glass, R.; Blummel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. ChemPhysChem 2004, 5, (3), 383-388.
24. Cavalcanti-Adam, E.; Micoulet, A.; Blummel, J.; Auernheimer, J.; Kessler, H.; Spatz, J. European journal of cell biology 2006, 85, (3-4), 219-224.
25. Maheshwari, G.; Brown, G.; Lauffenburger, D.; Wells, A.; Griffith, L. Journal of Cell Science 2000, 113, (10), 1677.
26. Biggs, M.; Richards, R.; Gadegaard, N.; Wilkinson, C.; Dalby, M. Journal of Materials Science: Materials in Medicine 2007, 18, (2), 399-404.
27. Dalby, M.; McCloy, D.; Robertson, M.; Agheli, H.; Sutherland, D.; Affrossman, S.; Oreffo, R. Biomaterials 2006, 27, (15), 2980-2987.
28. Park, S.; Lee, H.; Lee, K.; Suh, H. Biomaterials 2003, 24, (9), 1631-1641.
29. Flemming, R.; Murphy, C.; Abrams, G.; Goodman, S.; Nealey, P. Biomaterials 1999, 20, (6), 573-588.
30. Dalby, M.; McCloy, D.; Robertson, M.; Wilkinson, C.; Oreffo, R. Biomaterials 2006, 27, (8), 1306-1315.
31. Dalby, M.; Riehle, M.; Sutherland, D.; Agheli, H.; Curtis, A. Eur Cell Mater 2005, 9, 1-8.
32. Dalby, M.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M.; Herzyk, P.; Wilkinson, C.; Oreffo, R. Nature Materials 2007, 6, (12), 997-1003.
33. Lovmand, J.; Justesen, J.; Foss, M.; Lauridsen, R.; Lovmand, M.; Modin, C.; Besenbacher, F.; Pedersen, F.; Duch, M. Biomaterials 2009, 30, (11), 2015-2022.
34. Couchman, J. Nature Reviews Molecular Cell Biology 2003, 4, (12), 926-938.
35. Rapraeger, A. In Molecular interactions of syndecans during development, 2001; Elsevier: 2001; pp 107-116.
36. Tsan, M.; Gao, B. American Journal of Physiology- Cell Physiology 2004, 286, (4), C739.
37. Bihl, M.; Tamm, M.; Nauck, M.; Wieland, H.; Perruchoud, A.; Roth, M. American journal of respiratory cell and molecular biology 1998, 19, (4), 606.
38. Muller, W.; Weigl, S.; Deng, X.; Phillips, D. The Journal of experimental medicine 1993, 178, (2), 449.
39. Vaporciyan, A.; DeLisser, H.; Yan, H.; Mendiguren, I.; Thom, S.; Jones, M.; Ward, P.; Albelda, S. Science 1993, 262, (5139), 1580.
40. Shattil, S.; Ginsberg, M. J Clin Invest 1997, 100, 1-5.
41. Ferrara, N.; Gerber, H.; LeCouter, J. Nature medicine 2003, 9, (6), 669-676.
42. Hicklin, D.; Ellis, L. Journal of Clinical Oncology 2005, 23, (5), 1011.
43. Ferrara, N.; Houck, K.; Jakeman, L. JAIDS Journal of Acquired Immune Deficiency Syndromes 1993, 6, (6), 687.
44. Cross, M.; Dixelius, J.; Matsumoto, T.; Claesson-Welsh, L. Trends in biochemical sciences 2003, 28, (9), 488-494.
45. Compernolle, V.; Brusselmans, K.; Acker, T.; Hoet, P.; Tjwa, M.; Beck, H.; Plaisance, S.; Dor, Y.; Keshet, E.; Lupu, F. Nature medicine 2002, 8, (7), 702-710.
46. Gerber, H.; Dixit, V.; Ferrara, N. Journal of Biological Chemistry 1998, 273, (21), 13313.
47. Gerber, H.; McMurtrey, A.; Kowalski, J.; Yan, M.; Keyt, B.; Dixit, V.; Ferrara, N. Journal of Biological Chemistry 1998, 273, (46), 30336.
48. Benjamin, L.; Golijanin, D.; Itin, A.; Pode, D.; Keshet, E. Journal of Clinical Investigation 1999, 103, (2), 159-165.
49. Yuan, F.; Chen, Y.; Dellian, M.; Safabakhsh, N.; Ferrara, N.; Jain, R. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, (25), 14765.
50. Gerber, H.; Hillan, K.; Ryan, A.; Kowalski, J.; Keller, G.; Rangell, L.; Wright, B.; Radtke, F.; Aguet, M.; Ferrara, N. Development 1999, 126, (6), 1149.
51. SUJI, G.; SIVAKAMI, S. Annals of the New York Academy of Sciences 2006, 1067, (Understanding and Modulating Aging), 191-199.
52. Kalia, S.; Bansal, M. Molecular and cellular biochemistry 2009, 322, (1), 43-52.
53. Boehm, J.; Kutz, S.; Sage, E.; Staiano-Coico, L.; Higgins, P. Journal of cellular physiology 1999, 181, (1), 96-106.
54. Andreasen*, P.; Egelund, R.; Petersen, H. Cellular and Molecular Life Sciences 2000, 57, (1), 25-40.
55. Ciambrone, G.; McKeown-Longo, P. The Journal of Cell Biology 1990, 111, (5), 2183.
56. Deng, G.; Curriden, S.; Wang, S.; Rosenberg, S.; Loskutoff, D. The Journal of Cell Biology 1996, 134, (6), 1563.
57. LOSKUTOFF, D.; CURRIDEN, S.; HU, G.; DENG, G. Apmis 1999, 107, (1-6), 54-61.
58. Providence, K.; Kutz, S.; Staiano-Coico, L.; Higgins, P. Journal of cellular physiology 2000, 182, (2), 269-280.
59. McMahon, G.; Petitclerc, E.; Stefansson, S.; Smith, E.; Wong, M.; Westrick, R.; Ginsburg, D.; Brooks, P.; Lawrence, D. Journal of Biological Chemistry 2001, 276, (36), 33964.
60. Stefansson, S.; McMahon, G.; Petitclerc, E.; Lawrence, D. Current pharmaceutical design 2003, 9, (19), 1545-1564.
61. Bajou, K.; Noel, A.; Gerard, R.; Masson, V.; Brunner, N.; Holst-Hansen, C.; Skobe, M.; Fusenig, N.; Carmeliet, P.; Collen, D. Nature medicine 1998, 4, (8), 923-928.
62. Bajou, K.; Masson, V.; Gerard, R.; Schmitt, P.; Albert, V.; Praus, M.; Lund, L.; Frandsen, T.; Brunner, N.; Dano, K. The Journal of Cell Biology 2001, 152, (4), 777.
63. Gutierrez, L.; Schulman, A.; Brito-Robinson, T.; Noria, F.; Ploplis, V.; Castellino, F. Cancer research 2000, 60, (20), 5839.
64. Providence, K.; Higgins, P. Journal of cellular physiology 2004, 200, (2), 297-308.
65. Czekay, R.; Aertgeerts, K.; Curriden, S.; Loskutoff, D. Science's STKE 2003, 160, (5), 781.
66. Li, F.; Goncalves, J.; Faughnan, K.; Steiner, M.; Pagan-Charry, I.; Esposito, D.; Chin, B.; Providence, K.; Higgins, P.; Staiano-Coico, L. Experimental Cell Research 2000, 258, (2), 245-253.
67. Deng, G.; Curriden, S.; Hu, G.; Czekay, R.; Loskutoff, D. Journal of cellular physiology 2001, 189, (1), 23-33.
68. Providence, K.; Higgins, P. Journal of cellular physiology 2004, 200, (2), 297-308.
69. Stefansson, S.; Haudenschild, C.; Lawrence, D. Trends in Cardiovascular Medicine 1998, 8, (4), 175-180.
70. Wu C-T, K. F.-H., Hwang H-Y. Microelectronic Engineering 2006, 83, (4-9), 1567-1570
71. Pan, H. A.; Hung, Y. C.; Su, C. W.; Tai, S. M.; Chen, C. H.; Ko, F. H.; Steve Huang, G. Nanoscale Research Letters 2009, 4, (8), 903-912.
72. Partridge, M. A.; Marcantonio, E. E. Mol Biol Cell 2006, 17, (10), 4237-48.
73. Andersson, A. S.; Backhed, F.; von Euler, A.; Richter-Dahlfors, A.; Sutherland, D.; Kasemo, B. Biomaterials 2003, 24, (20), 3427-3436.
74. Erbil, H. Y. Science 2003, 299, (5611), 1377.
75. Geiger, B.; Bershadsky, A.; Pankov, R.; Yamada, K. Nature Reviews Molecular Cell Biology 2001, 2, (11), 793-805.
76. Geiger, B.; Spatz, J.; Bershadsky, A. Nature Reviews Molecular Cell Biology 2009, 10, (1), 21-33.
77. Cohen, M.; Joester, D.; Geiger, B.; Addadi, L. ChemBioChem 2004, 5, (10), 1393-1399.
78. Zimerman, B.; Volberg, T.; Geiger, B. Cell motility and the cytoskeleton 2004, 58, (3), 143-159.
79. Wang, G.; Li, Z.; Tang, C.; Du, D.; Shen, Y.; Lee, J.; Yu, Q. In VEGF-Transfected Human Endothelial Cell Coating on Stents Promotes Re-endothelization and Inhibits In-stent Restenosis, Springer: pp 1196-1199.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔