跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 21:35
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:許立翰
Author (Eng.):Hsu, Li-Han
Title:毫微米波段覆晶封裝技術之研究與應用
Title (Eng.):Flip-Chip Interconnect for Millimeter-Wave Packaging Applications
Advisor:張翼張翼 author reflink
advisor (eng):Chang, Edward Yi
degree:Ph.D
Institution:國立交通大學
Department:材料科學與工程學系
Narrow Field:工程學門
Detailed Field:材料工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2010
Graduated Academic Year:99
language:English
number of pages:129
keyword (chi):覆晶連線毫微米波單石微波電晶體封裝
keyword (eng):Flip-ChipInterconnectMillimeter-waveMMICPackaging
Ncl record status:
  • Cited Cited :1
  • HitsHits:599
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:54
  • gshot_favorites title msgFav:0
隨著近年來無線通訊市場的蓬勃發展,通訊產品的需求量大增,無線通訊系統之操作頻率也慢慢地提升到毫微米波段(Millimeter-Waves)。發展毫微米無線通訊系統除了需要適當的積體電路元件外,低成本與高性能的封裝技術也十分重要。為了達成商品化的目標,低功率消耗、低成本、小尺寸及輕量化的封裝技術在微波方面的應用慢慢地變成一個不可或缺的角色。然而,當元件操作在毫微米波段時,目前的封裝結構將會伴隨著許多寄生效應。因此為了維持良好的高頻電性,晶片與封裝基板之間的轉接必須謹慎地考量與設計。打線技術(Wire-Bonding)為傳統常用的封裝技術,但會伴隨著很強的寄生電感效應,此效應可能會嚴重衰減封裝後微波元件之特性。
覆晶封裝(Flip-Chip)憑藉著許多優異的特點,如:較短之轉接路徑、較小之封裝尺寸以及較高之生產效率,吸引了許多來自不論是學術界或者是工業界的注目。然而,由於覆晶技術有著極短的轉接路徑,使得晶片與封裝基板非常地接近,進而產生會使高頻電性衰退的接近效應(Proximity Effect or Detuning Effect)。文獻中已發表了運用增加凸塊(Bump)高度、減少金屬重疊面積以及利用補償電路(Compensation)等等之結構設計可有效地抑制此接近效應。此外,覆晶封裝的可靠度也是一個相當關鍵的課題。利用底膠填充(Underfill)的技術可有效地改善其可靠度,但卻會引起電性衰退。另一方面,生產成本也是封裝技術中相當重要的議題。傳統的封裝結構中,陶瓷基板提供穩定及良好的物性和化性。但一般來說,陶瓷基板的生產製作成本較高。因此,利用特性相近且較低價的高分子基板取代傳統陶瓷基板可達到降低成本同時又可以維持良好電性的目的。
本論文探討覆晶封裝於毫微米波段之研究與應用,主要可區分為兩部分。第一部分為單石微波積體電路(Monolithic Microwave Integrated Circuit)之覆晶封裝的驗證。本研究配合一高阻抗之補償設計,利用覆晶技術將一60 GHz一進二出(Single-Pole-Double-Throw)之開關元件封裝接合至氧化鋁(Al2O3)基板上。覆晶封裝後之開關元件表現出相當良好的高頻特性。另一方面,本研究也將覆晶封裝應用在一個包含低頻振盪器(Oscillator)以及倍增器(Multiplier)之多晶片模組(Multi-Chip Module)上。除了多晶片模組的驗證之外,此振盪器以及倍增器也被個別地覆晶接合至基板上以驗證覆晶封裝對單一晶片之影響。其量測結果顯示,覆晶封裝並沒有造成元件特性衰退。此外,多晶片模組也表現出良好的低像噪(Phase Noise)以及高輸出功率。
第二部分則是關於覆晶封裝中材料評估方面之研究。一般來說,覆晶封裝需要底膠填充來改善其機械可靠度。但填入底膠會對覆晶封裝之高頻特性產生負面的影響,如:傳輸線阻抗不匹配,以及高頻的介電損耗。為了解決這些問題,本研究將一環氧樹脂之底膠填入覆晶結構並且量測驗證至67 GHz。搭配傳輸線阻抗匹配設計與低高頻損耗的底膠材料,此覆晶結構表現出極佳的高頻特性。此外,我們也對此結構做一系列的可靠度測試。其測試結果表現出極佳的機械可靠度。此外,覆晶基板也是本研究另一個材料評估的重點。為了降低覆晶封裝的生產成本,本研究將被動傳輸線以及主動高電子遷移率電晶體(High Electron Mobility Transistor)用覆晶技術接合至一低成本Rogers RO3210TM高分子基板上來做驗證以及評估。其量測及可靠度測試結果顯示此低成本高分子基板可運用在50 GHz以上的商業應用。
In recent years, with the demands for wireless communication systems increases rapidly, the operating frequency for the portable wireless is moving toward millimeter-waves. Millimeter-wave wireless communication systems require not only suitable functional IC components but also competent package with low cost and good interconnect performance. To meet the demands for commercial applications, package with low power consumption, low cost, small size, and light weight becomes indispensable. However, unlike low frequency applications, millimeter-wave frequencies introduce significant parasitics and therefore the interconnect between IC chips and packaging carriers must be carefully managed in order to maintain good electrical performance. Conventional bond-wire induces significant parasitic inductance and thus results in unwanted effects, which could deviate the IC performance after assembly, especially at millimeter-wave frequencies.
Flip-chip interconnect has drawn lots of attentions for chip-level packaging at millimeter-wave frequencies due to several advantages over bond-wire, e.g., shorter interconnect length, smaller package size and higher throughput. However, at MMW frequency range, the proximity effect, or detuning effect, is a crucial issue for flip-chip due to the proximity of chip to substrate. The proximity effect may cause the flipped-chips to deviate from its original performance. Approaches like increasing the bump height, reducing the metal overlap and employing compensation design at the transition region have been proposed to improve flip-chip performance. In addition, flip- chip reliability is very crucial for industrial applications since it relies only on several metallic connections. Using underfill as a buffer layer between chips and carriers can significantly improve flip-chip reliability, but unfortunately, the trade-off is the underfill induced performance decay and deviation. Furthermore, cost-down is also very important for commercialization. Conventional ceramic-based carrier offers excellent chemical and physical properties but with higher cost. Using low-cost organic board might be a good solution to get lower cost with fair performance. However, the investigation for flip-chip on organic board is generally insufficient.
This dissertation covers an overall study for flip-chip interconnect to apply at millimeter-wave frequencies. It can be divided into two parts. The first part is about active device packaging. Single MMIC chips and mm-wave modules were flip-chip assembled for demonstration. A V-band SPDT switch for half-duplex RF front-end switching was flip-chip assembled and RF characterized to 67 GHz. By adopting hi-compensation design, the packaged switch showed excellent frequency response and very low additional loss. Moreover, a V-band frequency source with a 7 GHz oscillator and a x8 multiplier was flip-chip assembled onto a multi-chip carrier. For comparison, both the oscillator and x8 multiplier were also bonded as individual chip. From the measurement results, the flip-chip technique did not have any detrimental effect and the assembled module showed excellent phase noise of -112 dBc/Hz @ 1 MHz offset with high output power of 11 dBm, demonstrating outstanding performance for millimeter-wave frequency generation.
The second part is about material investigation in a flip-chip system. Underfill is generally required for improving flip-chip reliability. However, underfill in a flip-chip interconnect might introduce negative effects i.e., chip impedance mismatch and dielectric loss at millimeter-wave frequencies. To investigate and solve this issue, an epoxy-based was applied to a flip-chip structure and measured up to 67 GHz. By using pre-matching design and low-loss underfill, the flip-chip assembly exhibited excellent performances with return loss below -20 dB and insertion loss less than 0.6 dB. In addition, the reliability test revealed that the flip-chip assembly also performed excellent reliability. The other material investigation is about flip-chip carrier material. Low-cost Rogers RO3210TM organic laminate was employed to replace ceramic-based carrier for cost reduction and performance improvement. Both passive transmission lines and active discrete mHEMTs were flip-chip bonded onto RO3210TM. The test results showed that RO3210TM is a promising packaging carrier for commercial applications up to 50 GHz.
Chapter 1 Introduction………………………………………………1
1.1 Millimeter-Wave Applications…………………………………1
1.2 Millimeter-Wave Packaging……………………………………2
1.3 Flip-Chip vs. Wire-Bonding……………………………………3
1.4 Design of MMW Flip-Chip Interconnect………………………4
1.4.1 Bump Height and Diameter………………………5
1.4.2 Metal Overlap………………………………………5
1.4.3 Distance between Signal and Ground Bump……6
1.4.4 Compensation Designs……………………………6
1.5 Challenges of Flip-Chip Interconnect………………………6
1.5.1 Flip-Chip Based MCM…………………7
1.5.2 Underfill Application……………………………7
1.5.3 Low-Cost Organic Substrate……………………8
1.6 Outline of this Dissertation…………………………………9

Chapter 2 In-House Flip-Chip Fabrication Process…………17
2.1 Al2O3 Carrier……………………………………………………17
2.2 Flip-Chip Bonding Process……………………………………18

Chapter 3 Flip-Chip Packaged 60 GHz SPDT MMIC Switch with Suppression of Performance Deviation……………………………24
3.1 Background and Motivation……………………………………24
3.2 Design and Optimization of the Flip-Chip Transition…25
3.2.1 EM Simulation……………………………………25
3.2.2 Flip-Chip Equivalent Circuit Model…………26
3.2.3 SPDT Switch with Flip-Chip Transition……27
3.3 Results and Discussions………………………………………28
3.4 Summary……………………………………………………………29

Chapter 4 Flip-Chip Based Multi-Chip Module for Low Phase-Noise V-Band Frequency Generation………………………………43
4.1 Background and Motivation……………………………………43
4.2 Design and Optimization of the Flip-Chip Transition…45
4.3 Module Assembly and Circuit Characterization……………45
4.4 Measurement Results and Discussions………………………46
4.4.1 7 GHz Cross-Coupled HBT Oscillator…………46
4.4.2 V-Band x8 mHEMT Multiplier……………………50
4.4.3 Flip-Chip Based V-Band MCM Frequency Source…………………………………………………………………51
4.5 Summary……………………………………………………………54

Chapter 5 Design of Flip-Chip Interconnect Using Epoxy-Based Underfilll Up to V-Band Frequencies with Excellent Reliability……………………………………………………………70
5.1 Background and Motivation……………………………………70
5.2 Test Structure and Fabrication………………………………73
5.3 Design and Optimization………………………………………73
5.3.1 Matching Design on GaAs Chip…………………74
5.3.2 Matching Design on Al2O3 Substrate…………75
5.3.3 Dielectric Loss of Underfill Material……76
5.4 Reliability and Mechanical Strength………………………78
5.4.1 85oC/85% RH Test…………………………………78
5.4.2 Thermal Cycling Test……………………………78
5.4.3 Shear Force Test…………………………………79
5.5 Summary……………………………………………………………80

Chapter 6 Design, Fabrication and Reliability of Low-Cost Flip-Chip-On-Board Package for Commercial Applications up to 50 GHz………………………………………………………………92
6.1 Background and Motivation……………………………………92
6.2 CPW Transmission Line on PCB………………………………94
6.3 Package Fabrication……………………………………………95
6.4 Results and Discussion………………………………………96
6.4.1 Passive Structure………………………………96
6.4.2 Active Discrete mHEMT Device…………………98
6.5 Underfill Injection and Reliability Test………………99
6.6 Summary…………………………………………………………100

Chapter 7 Conclusion………………………………………………112

References……………………………………………………………114

CURRICULUM VITAE (in English)...........................125

CURRICULUM VITAE (in Chinese)...........................126

Publication List........................................127

[1] P. Smulders, “Exploiting the 60 GHz band for local wireless multi-media access: Prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140-147, Jan. 2002.
[2] Val Dyadyuk, John D. Bunton, Joseph Pathikulangara, Rodney Kendall, Oya Sevimli, Leigh Stokes, and David A. Abbott, “A Multigigabit Millimeter-Wave Communication System With Improved Spectral Efficiency”, IEEE Trans. Microwave Theory Tech., vol. 55, issue 12, pp. 2813-2821, Dec. 2007.
[3] A. Tessmann, A. Leuther, H. Massler, M. Kuri, M. Riessle, M. Zink, R. Sommer, A. Wahlen, and H. Essen, “Metamorphic HEMT Amplifier Circuits for Use in a High Resolution 210 GHz Radar,” IEEE CSIC 2007, Compound Semiconductor Integrated Circuit Symposium, 2007, pp. 1-4, 14-17 Oct. 2007.
[4] C. Schworer, Y.C. Roca, A. Leuther, A. Tessmann, M. Seelmann-Eggebert, H. Massler, M. Schlechtweg, and G. Weimann, “A 150 to 220 GHz balanced doubler MMIC using a 50 nm metamorphic HEMT technology,” Gallium Arsenide and Other Semiconductor Application Symposium, 2005. European EGAAS 2005., pp. 565-568, 30 May 2005.
[5] J. H. Lau, “Cost analysis: solder bumped flip chip versus wire bonding,” IEEE Trans. Electronics Packaging Manufacturing, vol. 23, issue 1, pp. 4-11, Jan. 2000.
[6] G. Baumann, H. Richter, A. Baumgärtner, D. Ferling, and R. Heilig, “51 GHz front-end with flip-chip and wire bond interconnections from GaAs MMIC’s to a planar patch antenna,” IEEE MTT-S International Microwave Symposium Digest, Orlando, FL/USA, 16-20 May 1995, vol. 3, pp. 1639–1642.
[7] W. Heinrich, “The flip-chip approach for millimeter wave packaging,” IEEE Microwave Magazine, vol. 6, issue 3, pp. 36-45, Sept. 2005.
[8] A. Jentzsch and W. Heinrich, “Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz,” IEEE Trans. Microwave Theory and Tech., vol. 49, issue 5, pp. 871–878, May 2001.
[9] W. Heinrich, A. Jentzsch, and G. Baumann, “Millimeter-wave characteristics of flip-chip interconnects for multichip modules,” IEEE Trans. Microwave Theory and Tech., vol. 46, issue 12, pp. 2264–2268, Dec 1998.
[10] C.L. Wang, and R.B. Wu, “Modeling and design for electrical performance of wideband flip-chip transition,” IEEE Trans. Advanced Packaging, vol. 26, issue 4, pp. 385 – 391, Nov. 2003.
[11] D. Staiculescu, J. Laskar and E.M. Tentzeris, “Design rule development for microwave flip-chip applications,” IEEE Trans. Microwave Theory and Tech., vol. 48, issue 9, pp. 1476–1481, Sept. 2000.
[12] K. Maruhashi, M. Ito, H. Kusamitsu, Y. Morishita, and K. Ohata, “RF performance of a 77 GHz monolithic CPW amplifier with flip-chip interconnections,” IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD/USA, June 7-12, 1998 vol. 2, pp. 1095–1098.
[13] H. Kusamitsu, Y. Morishita, K. Maruhasi, M. Ito and K. Ohata, ” The flip-chip bump interconnection for millimeter-wave GaAs MMIC,” IEEE Trans. Electronics Packaging Manufacturing, vol. 22, issue 1, pp. 23 – 28, Jan. 1999.
[14] C. Karnfelt, H. Zirath, J.P. Starski, and J. Rudnicki, “Flip chip assembly of a 40-60 GHz GaAs microstrip amplifier,” 34th European Microwave Conference, Amsterdam, Netherlands, 11-15 Oct. 2004, pp. 89-92.
[15] K. Hettak, G.A. Morin, and M.G. Stubbs, “DC-to-50 GHz compensation structure for flip-chip assembled SPST MEMS switch,” IEEE MTT-S International Microwave Symposium Digest, 2009. MTT '09., pp. 597-600, 7-12 June 2009.
[16] Y. Arai, M. Sato, H. T. Yamada, T. Hamada, K. Nagai, and H. I. Fujishiro, “60-GHz flip-chip assembled MIC design considering chip substrate effect,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2261–2266, Dec. 1997.
[17] T. Hirose, K. Makiyama, K. Ono, T. M. Shimura, S. Aoki, Y. Ohashi, S. Yokokawa, and Y.Watanabe, “A flip-chip MMIC design with coplanar waveguide transmission line in the W-Band,” IEEE Trans. Microw. Theory Tech., vol. 46, issue 12, pp. 2276–2282, Dec. 1998.
[18] A. Tessmann, M. Riessle, S. Kudszus, and H. Massler, “A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 145–147, Apr. 2004.
[19] M. Ito, K. Maruhashi, K. Ikuina, N. Senba, N. Takahashi, and K. Ohata, “Low cost multi-layer ceramic package for flip-chip MMIC up to W-band,” 2000 IEEE MTT-S International Microwave Symposium Digest., vol. 1, pp. 57-60, 6 Aug. 2002.
[20] M. Ito, S. Kishimoto, Y. Hamada, and K. Maruhashi, “A 60-GHz-Band 12-Multiplier MMIC With Reduced Power Consumption,” IEEE Trans. Microw. Theory Tech., vol. 54, issue 12, pp. 4522–4527, Dec. 2006.
[21] Sanghyo Lee, Sangsub Song, Youngmin Kim, Jangsoo Lee, Chang-Yul Cheon, Kwang-Seok Seo, and Youngwoo Kwon, “A V-Band Beam-Steering Antenna on a Thin-Film Substrate With a Flip-Chip Interconnection,” IEEE Trans. Microw. Theory Tech., vol. 18, issue 4, pp. 287-289, March 2008.
[22] Sangsub Song, Jimin Maeng, Heeseok Lee, and Kwang-Seok Seo, “High-Performance Millimeter-Wave SOP Technology with Flip-Chip Interconnection,” Proceedings. 57th Electronic Components and Technology Conference, 2007. ECTC '07, Reno, NV/US, pp. 1007-1013, May 29 2007-June 1 2007.
[23] K. Maruhashi, M. Ito, K. Ikuina, T. Hashiguchi, J. Matsuda, W. Domon, S. Iwanaga, N. Takahashi, T. Ishihara, Y. Yoshida, I. Izumi, and K. Ohata, “60GHz-Band Flip-Chip MMIC Modules for IEEE1394 Wireless Adapters,” 31st European Microwave Conference, 2001, London, England, pp. 1-4, 24-26 Sept. 2001.
[24] Zhiping Feng, Wemge Zhang, Bingzhi Su, K.C. Gupta, and Y.C. Lee, “RF and mechanical characterization of flip-chip interconnects in CPW circuits with underfill,” IEEE Trans. Microwave Theory and Tech., vol. 46, issue 12, part 2, pp. 2269–2275, Dec. 1999.
[25] F.J. Schmuckle, F. Lenk, M. Hutter, M. Klein, H. Oppermann, G. Engelmann, M. Topper, K. Riepe, and W. Heinrich, “W-band flip-chip VCO in thin-film environment,” 2005 IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA/USA, 12-17 June 2005.
[26] G. Baumann, E. Muller, F. Buchali, D. Ferling, H. Richter and W. Heinrich, “Evaluation of Glob Top and Underfill Encapsulated Active and Passive Structures for Millimeter Wave Applications,” 27th European Microwave Conference, Jerusalem, Israel, Oct. 1997, vol. 1, pp. 26 – 31.
[27] P. Monfraix, J. Monsarrat, J.L. Muraro, C. Drevon, S. Dareys, M. Billot and J.L. Cazaux, “Is hermetic encapsulation of GaAs MMIC still required for space applications?” 2005 IEEE MTT-S International Microwave Symposium Digest, June 2005, Long Beach, CA/USA. 4 pp.-
[28] Y.K. Song, and C.C. Lee, “Millimeter-wave coplanar strip (CPS) line flip chip packaging on PCBs,” Proceedings of 55th Electronic Components and Technology Conference, 2005, Lake Buena Vista, FL/USA, vol. 2, pp. 1807-1813, 31 May-3 June 2005.
[29] M. Case, “SiGe MMICs and flip-chip MICs for low-cost microwave systems,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 1997, Denver CO/USA, pp. 117-120, 8-11 Jun 1997.
[30] Guo-Wei Xiao, Xiao Huo and P.C.H. Chan, “RF circuit integration using high Q copper inductors on organic substrate and solder-bumped flip chip technology,” Proceedings of 53rd Electronic Components and Technology Conference, 2003, New Orleans, LA/USA, pp. 487-492, May 27-30, 2003.
[31] K. Chai and L. Wu, “The underfill processing technologies for flip chip packaging,” First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Potsdam, Germany, Oct. 2001, pp.119 – 123.
[32] L. Nguyen and H. Nguyen, “Effect of underfill fillet configuration on flip chip package reliability,” 27th Annual IEEE/SEMI International Electronics Manufacturing Technology Symposium, San Jose, CA/USA, July 2002, pp. 291 – 303.
[33] K.H. Teo, “Reliability assessment of flip chip on board connections,” Proceeding of 2nd Electronics Packaging Technology Conference, Singapore, Dec. 1998, pp. 269 – 273.
[34] W.K. Huang, Y.A. Liu, C.M. Wang, Y.M. Hsin, C.Y. Liu, and T.J Yeh, “Flip-Chip Assembled GaAs pHEMT Ka-Band Oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, issue 1, pp. 67-69, Jan. 2007.
[35] K. Watanabe, T. Deguchi, and A. Nakagawa, “V-band planar Gunn oscillators and VCOs on AlN substrates using flip-chip bonding technology,” 1999 IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA/USA, 13-19 June 1999, vol. 1, pp. 13-16.
[36] T. Yoshida, Y. Fukasawa, T. Deguchi, K. Kawaguchi, T. Sugiyama, and A. Nakagawa, “A low-phase-noise 76-GHz planar Gunn oscillator using flip-chip bonding technology,” 2005 European Microwave Conference, Paris, France, 4-6 Oct. 2005, vol. 1.
[37] M. Siddiqui, M. Quijije, A. Lawrence, B. Pitman, R. Katz, P. Tran, A. Chau, D. Davison, S. Din, R. Lai and D. Streit, “GaAs Components for 60 GHz Wireless Communication Applications,” in Proc. CS-MAX, Compound Semicond. Manufact. Expo, San Diego, CA/USA, May 2002.
[38] H. H. M. Ghouz and E. El-Aharawy, “An accurate equivalent circuit model of flip chip and via interconnects,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2543–2554, Dec. 1996.
[39] C. Kärnfelt, R. Kozhuharov, H. Zirath, and I. Angelov, “High-purity 60-GHz-band single-chip x8 multipliers in pHEMT and mHEMT technology,” IEEE Trans. Microwave Theory and Tech., vol. 54, issue 6, pp. 2887–2898, June 2006.
[40] H. Zirath, R. Kozhuharov, and M. Ferndahl, “Balanced Colpitt oscillator MMICs designed for ultra-low phase noise,” IEEE Journal of Solid-State Circuits, vol. 40, issue 10, pp. 2077–2086, Oct. 2005.
[41] K.K. Samanta, D. Stephens, and I.D. Robertson, “60 GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter,” Electronics Letters, vol. 42, pp. 701-702, June 2006.
[42] L. Suthar, V.N. Singh, and A. Kumar, “Design & simulation of MCM technology based MM wave transceiver,” International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, Nov. 2008, pp. 533-535, 21-24.
[43] J. Heyen, and A.F. Jacob, “A novel package approach for multichip modules based on anisotropic conductive adhesives,” Gallium Arsenide and Other Semiconductor Application Symposium, 2005, EGAAS 2005, European, 3-4 Oct. 2005, pp. 553-556.
[44] Dan Kuylenstierna, Herbert Zirath, Rumen Kozuharov, Mingquan Bao, and TC Tsai, “Low phase noise MMIC oscillators in InGaP HBT technology,” Asia Pacific Microwave Conference 2008, Hong Kong, Dec. 2008.
[45] X. Huo, G-W Xiao, P.C.H. Chan, and K.J. Chen, “Silicon-on-Organic Integration of a 2.4–GHz oscillator Using High-Q Copper Inductors and Solder-Bumped Flip Chip Technology,” IEEE Transactions on Components and Packaging Technologies, Vol. 32, issue 1, pp. 191-196, March, 2009.
[46] K. Stadius, and K. Halonen, “Development of 4-GHz flip-chip oscillator module,” IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005, Kobe, Japan, 23-26 May 2005, vol. 3, pp. 2687-2690.
[47] Y.M. Hsin, Y.A. Liu, C.M. Wang, W.K. Huang and T.J. Yeh, “27 GHz Flip-Chip Assembled pHEMT Oscillator,” in Proc. CS-MAX, Compound Semicond. Manufact. Expo, Vancouver, British Columbia/Canada, 24-27 April 2006, pp. 127-129.
[48] W.K. Huang, Y.A. Liu, C.M. Wang, Y.M. Hsin, C.Y. Liu, and T.J Yeh, “Flip-Chip Assembled GaAs pHEMT Ka-Band Oscillator,” IEEE Microwave and Wireless Components Letters, vol. 17, issue 1, pp. 67-69, Jan. 2007.
[49] M. Ito, K. Maruhashi, S. Kishimoto, T. Hashiguchi, and K. Ohata, “A 30 GHz-band oscillator coupled with a dielectric resonator using flip-chip bonding technique,” 2004 IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX/USA, 6-11 June 2004, vol. 3, pp. 1995-1998.
[50] T. Yoshida, T. Deguchi, K. Kawaguchi, and A. Nakagawa, “Ka-band planar Gunn oscillators using flip-chip GaAs Gunn diodes fabricated by boron ion implantation,” 22nd Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2000, Seattle, WA/USA, 5-8 Nov. 2000, pp. 165-168.
[51] K. Watanabe, T. Deguchi, and A. Nakagawa, “V-band planar Gunn oscillators and VCOs on AlN substrates using flip-chip bonding technology,” 1999 IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA/USA, 13-19 June 1999, vol. 1, pp. 13-16.
[52] T. Yoshida, Y. Fukasawa, T. Deguchi, K. Kawaguchi, T. Sugiyama, and A. Nakagawa, “A low-phase-noise 76-GHz planar Gunn oscillator using flip-chip bonding technology,” 2005 European Microwave Conference, Paris, France, 4-6 Oct. 2005, vol. 1
[53] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, Feb. 1966, vol. 54, pp. 329–330.
[54] M.Q. Bao, Y.G. Li, and H. Jacobsson, “A 21.5/43-GHz dual-frequency balanced Colpitts VCO in SiGe technology,” IEEE Journal of Solid-State Circuits, vol. 39, issue 8, pp. 1352-1355, Aug. 2004.
[55] H. Li, and H.M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE Journal of Solid-State Circuits, vol. 38, issue 2, pp. 184-191, Feb. 2003.
[56] A. Kurdoghlian, M. Sokolich, M. Case, M. Micovic, S. Thomas III, and C.H. Fields, “38 GHz low phase noise CPW monolithic VCOs implemented in manufacturable AlInAs/InGaAs HBT IC technology,” 22nd Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2000, Seattle, WA/USA, 5-8 Nov. 2000, pp. 99-102.
[57] D.K. Shaeffer, and S. Kudszus, “Performance-optimized microstrip coupled VCOs for 40-GHz and 43-GHz OC-768 optical transmission,” IEEE Journal of Solid-State Circuits, vol. 38, issue 7, pp. 1130-1138, July 2003.
[58] D.K. Hien, M. Stubs, T. Laneve, C. Glaser, and D. Drolet, “Ka-band MMIC voltage-controlled oscillators,” 1997 Asia-Pacific Microwave Conference Proceedings, 1997. APMC '97, Hong Kong, 2-5 Dec. 1997, vol. 2, pp. 545-548.
[59] M.S. Heins, D.W. Barlage, M.T. Fresina, D.A. Ahmari, Q.J. Hartmann, G.E. Stillman, and M. Feng, “Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 1997, Denver, CO/USA, 8-11 June 1997, pp. 215-218.
[60] F. Herzel, C.S. Choi and E. Grass, “Frequency synthesis for 60-GHz OFDM transceivers,” European Conference on Wireless Technology, 2008. EuWiT 2008, Amsterdam, Netherlands, 27-28 Oct. 2008, pp. 77-80.
[61] A. Kanda, T. Hirota, H. Okazaki, and M. Nakamae, “An MMIC chip set for a V-band phase-locked local oscillator,” 17th Annual IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1995. Technical Digest 1995, San Diego, CA/USA, 29 Oct.-1 Nov. 1995, pp. 259-262.
[62] T. Kashiwa, T. Ishida, T. Katoh, H. Kurusu, H. Hoshi, and Y. Mitsui, “V-band high-power low phase-noise monolithic oscillators and investigation of low phase-noise performance high drain bias,” IEEE Trans. Microwave Theory and Tech., vol. 46, issue 10, pp. 1559-1565, Oct. 1998.
[63] P.C. Huang, and M.D. Tsai, G.D. Vendelin, H. Wang, C.H. Chen, and C.S. Chang, “A Low-Power 114-GHz Push–Push CMOS VCO Using LC Source Degeneration,” IEEE Journal of Solid-State Circuits, vol. 42, issue 6, pp. 1230-1239, June 2007.
[64] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y. Tsutsumi, and I. Seto, “A 60-GHz CMOS Receiver Front-End With Frequency Synthesizer,” IEEE Journal of Solid-State Circuits, vol. 43, issue 4, pp. 1030-1037, April 2008.
[65] H. Wang K.W. Chang, D.C.-W. Lo, L.T. Tran, J.C. Cowles, T.R. Block, G.S. Dow, A. Oki, D.C. Streit, and B.R. Allen, “A 62-GHz monolithic InP-based HBT VCO,” IEEE Microwave and Guided Wave Letters, [see also IEEE Microwave and Wireless Components Letters], vol. 5, issue 11, pp. 388-390, Nov. 1995.
[66] V. Jain, B. Javid, and P. Heydari, “A 24/77GHz dual-band BiCMOS frequency synthesizer,” IEEE Custom Integrated Circuits Conference, 2008. CICC 2008, San Jose, CA/USA, 21-24 Sept. 2008, pp. 487-490.
[67] R. Harrington, Time Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961, p. 156.
[68] P. Dixon, “Cavity-Resonance Dampening,” IEEE Microwave Magazine, vol. 6, issue 2, pp. 74-84, June 2005.
[69] J. Capwell, T. Weller, D. Markell and L. Dunleavy, “Automation and Real-time Verification of Passive Component S-parameter Measurements Using Loss Factor Calculations,” Microwave Journal, vol. 47, issue 3, March 2004.
[70] D. Gamota and C. Melton, “Materials to integrate the solder reflow and underfill encapsulation processes for flip chip on board assembly,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, vol. 21, issue 1, pp. 57-65, Jan. 1998.
[71] W. Deal, “Coplanar waveguide basics for MMIC and PCB design,” IEEE Microwave Magazine, vol. 9, issue 4, pp. 120-133, Aug. 2008.
[72] Hung-Pin Chang, Jiangyuan Qian, B.A. Cetiner, F. De Flaviis, M. Bachman, and G.P. Li, “Design and process considerations for fabricating RF MEMS switches on printed circuit boards,” Journal of Microelectromechanical Systems, vol. 14, issue 6, pp. 1311-1322, Dec. 2005.
[73] Muhammad AKRAM, Athar JAVED and Tasneem Zahra RIZVI, “Dielectric Properties of Industrial Polymer Composite Materials,” Turk J. Phys., 29, pp. 355-362, 2005.
[74] G. E. Ponchak, J. Papapolymerous, and M. M. Tentzeris, “Excitation of Coupled Slotline Mode in Finite-Ground CPW With Unequal Ground-Plane Widths,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 713-717, Feb. 2005.
[75] E.Y. Chang, G.T. Cibuzar, and K.P. Pande, “Passivation of GaAs FET's with PECVD silicon nitride films of different stress states,” IEEE Transactions on Electron Devices, vol. 35, issue 9, pp. 1412-1418, Sep. 1988.

Link to school's url:Link url
Link record message
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
system icon system icon