|
[1] P. Smulders, “Exploiting the 60 GHz band for local wireless multi-media access: Prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140-147, Jan. 2002. [2] Val Dyadyuk, John D. Bunton, Joseph Pathikulangara, Rodney Kendall, Oya Sevimli, Leigh Stokes, and David A. Abbott, “A Multigigabit Millimeter-Wave Communication System With Improved Spectral Efficiency”, IEEE Trans. Microwave Theory Tech., vol. 55, issue 12, pp. 2813-2821, Dec. 2007. [3] A. Tessmann, A. Leuther, H. Massler, M. Kuri, M. Riessle, M. Zink, R. Sommer, A. Wahlen, and H. Essen, “Metamorphic HEMT Amplifier Circuits for Use in a High Resolution 210 GHz Radar,” IEEE CSIC 2007, Compound Semiconductor Integrated Circuit Symposium, 2007, pp. 1-4, 14-17 Oct. 2007. [4] C. Schworer, Y.C. Roca, A. Leuther, A. Tessmann, M. Seelmann-Eggebert, H. Massler, M. Schlechtweg, and G. Weimann, “A 150 to 220 GHz balanced doubler MMIC using a 50 nm metamorphic HEMT technology,” Gallium Arsenide and Other Semiconductor Application Symposium, 2005. European EGAAS 2005., pp. 565-568, 30 May 2005. [5] J. H. Lau, “Cost analysis: solder bumped flip chip versus wire bonding,” IEEE Trans. Electronics Packaging Manufacturing, vol. 23, issue 1, pp. 4-11, Jan. 2000. [6] G. Baumann, H. Richter, A. Baumgärtner, D. Ferling, and R. Heilig, “51 GHz front-end with flip-chip and wire bond interconnections from GaAs MMIC’s to a planar patch antenna,” IEEE MTT-S International Microwave Symposium Digest, Orlando, FL/USA, 16-20 May 1995, vol. 3, pp. 1639–1642. [7] W. Heinrich, “The flip-chip approach for millimeter wave packaging,” IEEE Microwave Magazine, vol. 6, issue 3, pp. 36-45, Sept. 2005. [8] A. Jentzsch and W. Heinrich, “Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz,” IEEE Trans. Microwave Theory and Tech., vol. 49, issue 5, pp. 871–878, May 2001. [9] W. Heinrich, A. Jentzsch, and G. Baumann, “Millimeter-wave characteristics of flip-chip interconnects for multichip modules,” IEEE Trans. Microwave Theory and Tech., vol. 46, issue 12, pp. 2264–2268, Dec 1998. [10] C.L. Wang, and R.B. Wu, “Modeling and design for electrical performance of wideband flip-chip transition,” IEEE Trans. Advanced Packaging, vol. 26, issue 4, pp. 385 – 391, Nov. 2003. [11] D. Staiculescu, J. Laskar and E.M. Tentzeris, “Design rule development for microwave flip-chip applications,” IEEE Trans. Microwave Theory and Tech., vol. 48, issue 9, pp. 1476–1481, Sept. 2000. [12] K. Maruhashi, M. Ito, H. Kusamitsu, Y. Morishita, and K. Ohata, “RF performance of a 77 GHz monolithic CPW amplifier with flip-chip interconnections,” IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD/USA, June 7-12, 1998 vol. 2, pp. 1095–1098. [13] H. Kusamitsu, Y. Morishita, K. Maruhasi, M. Ito and K. Ohata, ” The flip-chip bump interconnection for millimeter-wave GaAs MMIC,” IEEE Trans. Electronics Packaging Manufacturing, vol. 22, issue 1, pp. 23 – 28, Jan. 1999. [14] C. Karnfelt, H. Zirath, J.P. Starski, and J. Rudnicki, “Flip chip assembly of a 40-60 GHz GaAs microstrip amplifier,” 34th European Microwave Conference, Amsterdam, Netherlands, 11-15 Oct. 2004, pp. 89-92. [15] K. Hettak, G.A. Morin, and M.G. Stubbs, “DC-to-50 GHz compensation structure for flip-chip assembled SPST MEMS switch,” IEEE MTT-S International Microwave Symposium Digest, 2009. MTT '09., pp. 597-600, 7-12 June 2009. [16] Y. Arai, M. Sato, H. T. Yamada, T. Hamada, K. Nagai, and H. I. Fujishiro, “60-GHz flip-chip assembled MIC design considering chip substrate effect,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2261–2266, Dec. 1997. [17] T. Hirose, K. Makiyama, K. Ono, T. M. Shimura, S. Aoki, Y. Ohashi, S. Yokokawa, and Y.Watanabe, “A flip-chip MMIC design with coplanar waveguide transmission line in the W-Band,” IEEE Trans. Microw. Theory Tech., vol. 46, issue 12, pp. 2276–2282, Dec. 1998. [18] A. Tessmann, M. Riessle, S. Kudszus, and H. Massler, “A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 4, pp. 145–147, Apr. 2004. [19] M. Ito, K. Maruhashi, K. Ikuina, N. Senba, N. Takahashi, and K. Ohata, “Low cost multi-layer ceramic package for flip-chip MMIC up to W-band,” 2000 IEEE MTT-S International Microwave Symposium Digest., vol. 1, pp. 57-60, 6 Aug. 2002. [20] M. Ito, S. Kishimoto, Y. Hamada, and K. Maruhashi, “A 60-GHz-Band 12-Multiplier MMIC With Reduced Power Consumption,” IEEE Trans. Microw. Theory Tech., vol. 54, issue 12, pp. 4522–4527, Dec. 2006. [21] Sanghyo Lee, Sangsub Song, Youngmin Kim, Jangsoo Lee, Chang-Yul Cheon, Kwang-Seok Seo, and Youngwoo Kwon, “A V-Band Beam-Steering Antenna on a Thin-Film Substrate With a Flip-Chip Interconnection,” IEEE Trans. Microw. Theory Tech., vol. 18, issue 4, pp. 287-289, March 2008. [22] Sangsub Song, Jimin Maeng, Heeseok Lee, and Kwang-Seok Seo, “High-Performance Millimeter-Wave SOP Technology with Flip-Chip Interconnection,” Proceedings. 57th Electronic Components and Technology Conference, 2007. ECTC '07, Reno, NV/US, pp. 1007-1013, May 29 2007-June 1 2007. [23] K. Maruhashi, M. Ito, K. Ikuina, T. Hashiguchi, J. Matsuda, W. Domon, S. Iwanaga, N. Takahashi, T. Ishihara, Y. Yoshida, I. Izumi, and K. Ohata, “60GHz-Band Flip-Chip MMIC Modules for IEEE1394 Wireless Adapters,” 31st European Microwave Conference, 2001, London, England, pp. 1-4, 24-26 Sept. 2001. [24] Zhiping Feng, Wemge Zhang, Bingzhi Su, K.C. Gupta, and Y.C. Lee, “RF and mechanical characterization of flip-chip interconnects in CPW circuits with underfill,” IEEE Trans. Microwave Theory and Tech., vol. 46, issue 12, part 2, pp. 2269–2275, Dec. 1999. [25] F.J. Schmuckle, F. Lenk, M. Hutter, M. Klein, H. Oppermann, G. Engelmann, M. Topper, K. Riepe, and W. Heinrich, “W-band flip-chip VCO in thin-film environment,” 2005 IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA/USA, 12-17 June 2005. [26] G. Baumann, E. Muller, F. Buchali, D. Ferling, H. Richter and W. Heinrich, “Evaluation of Glob Top and Underfill Encapsulated Active and Passive Structures for Millimeter Wave Applications,” 27th European Microwave Conference, Jerusalem, Israel, Oct. 1997, vol. 1, pp. 26 – 31. [27] P. Monfraix, J. Monsarrat, J.L. Muraro, C. Drevon, S. Dareys, M. Billot and J.L. Cazaux, “Is hermetic encapsulation of GaAs MMIC still required for space applications?” 2005 IEEE MTT-S International Microwave Symposium Digest, June 2005, Long Beach, CA/USA. 4 pp.- [28] Y.K. Song, and C.C. Lee, “Millimeter-wave coplanar strip (CPS) line flip chip packaging on PCBs,” Proceedings of 55th Electronic Components and Technology Conference, 2005, Lake Buena Vista, FL/USA, vol. 2, pp. 1807-1813, 31 May-3 June 2005. [29] M. Case, “SiGe MMICs and flip-chip MICs for low-cost microwave systems,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 1997, Denver CO/USA, pp. 117-120, 8-11 Jun 1997. [30] Guo-Wei Xiao, Xiao Huo and P.C.H. Chan, “RF circuit integration using high Q copper inductors on organic substrate and solder-bumped flip chip technology,” Proceedings of 53rd Electronic Components and Technology Conference, 2003, New Orleans, LA/USA, pp. 487-492, May 27-30, 2003. [31] K. Chai and L. Wu, “The underfill processing technologies for flip chip packaging,” First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Potsdam, Germany, Oct. 2001, pp.119 – 123. [32] L. Nguyen and H. Nguyen, “Effect of underfill fillet configuration on flip chip package reliability,” 27th Annual IEEE/SEMI International Electronics Manufacturing Technology Symposium, San Jose, CA/USA, July 2002, pp. 291 – 303. [33] K.H. Teo, “Reliability assessment of flip chip on board connections,” Proceeding of 2nd Electronics Packaging Technology Conference, Singapore, Dec. 1998, pp. 269 – 273. [34] W.K. Huang, Y.A. Liu, C.M. Wang, Y.M. Hsin, C.Y. Liu, and T.J Yeh, “Flip-Chip Assembled GaAs pHEMT Ka-Band Oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, issue 1, pp. 67-69, Jan. 2007. [35] K. Watanabe, T. Deguchi, and A. Nakagawa, “V-band planar Gunn oscillators and VCOs on AlN substrates using flip-chip bonding technology,” 1999 IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA/USA, 13-19 June 1999, vol. 1, pp. 13-16. [36] T. Yoshida, Y. Fukasawa, T. Deguchi, K. Kawaguchi, T. Sugiyama, and A. Nakagawa, “A low-phase-noise 76-GHz planar Gunn oscillator using flip-chip bonding technology,” 2005 European Microwave Conference, Paris, France, 4-6 Oct. 2005, vol. 1. [37] M. Siddiqui, M. Quijije, A. Lawrence, B. Pitman, R. Katz, P. Tran, A. Chau, D. Davison, S. Din, R. Lai and D. Streit, “GaAs Components for 60 GHz Wireless Communication Applications,” in Proc. CS-MAX, Compound Semicond. Manufact. Expo, San Diego, CA/USA, May 2002. [38] H. H. M. Ghouz and E. El-Aharawy, “An accurate equivalent circuit model of flip chip and via interconnects,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2543–2554, Dec. 1996. [39] C. Kärnfelt, R. Kozhuharov, H. Zirath, and I. Angelov, “High-purity 60-GHz-band single-chip x8 multipliers in pHEMT and mHEMT technology,” IEEE Trans. Microwave Theory and Tech., vol. 54, issue 6, pp. 2887–2898, June 2006. [40] H. Zirath, R. Kozhuharov, and M. Ferndahl, “Balanced Colpitt oscillator MMICs designed for ultra-low phase noise,” IEEE Journal of Solid-State Circuits, vol. 40, issue 10, pp. 2077–2086, Oct. 2005. [41] K.K. Samanta, D. Stephens, and I.D. Robertson, “60 GHz multi-chip-module receiver with substrate integrated waveguide antenna and filter,” Electronics Letters, vol. 42, pp. 701-702, June 2006. [42] L. Suthar, V.N. Singh, and A. Kumar, “Design & simulation of MCM technology based MM wave transceiver,” International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, Nov. 2008, pp. 533-535, 21-24. [43] J. Heyen, and A.F. Jacob, “A novel package approach for multichip modules based on anisotropic conductive adhesives,” Gallium Arsenide and Other Semiconductor Application Symposium, 2005, EGAAS 2005, European, 3-4 Oct. 2005, pp. 553-556. [44] Dan Kuylenstierna, Herbert Zirath, Rumen Kozuharov, Mingquan Bao, and TC Tsai, “Low phase noise MMIC oscillators in InGaP HBT technology,” Asia Pacific Microwave Conference 2008, Hong Kong, Dec. 2008. [45] X. Huo, G-W Xiao, P.C.H. Chan, and K.J. Chen, “Silicon-on-Organic Integration of a 2.4–GHz oscillator Using High-Q Copper Inductors and Solder-Bumped Flip Chip Technology,” IEEE Transactions on Components and Packaging Technologies, Vol. 32, issue 1, pp. 191-196, March, 2009. [46] K. Stadius, and K. Halonen, “Development of 4-GHz flip-chip oscillator module,” IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005, Kobe, Japan, 23-26 May 2005, vol. 3, pp. 2687-2690. [47] Y.M. Hsin, Y.A. Liu, C.M. Wang, W.K. Huang and T.J. Yeh, “27 GHz Flip-Chip Assembled pHEMT Oscillator,” in Proc. CS-MAX, Compound Semicond. Manufact. Expo, Vancouver, British Columbia/Canada, 24-27 April 2006, pp. 127-129. [48] W.K. Huang, Y.A. Liu, C.M. Wang, Y.M. Hsin, C.Y. Liu, and T.J Yeh, “Flip-Chip Assembled GaAs pHEMT Ka-Band Oscillator,” IEEE Microwave and Wireless Components Letters, vol. 17, issue 1, pp. 67-69, Jan. 2007. [49] M. Ito, K. Maruhashi, S. Kishimoto, T. Hashiguchi, and K. Ohata, “A 30 GHz-band oscillator coupled with a dielectric resonator using flip-chip bonding technique,” 2004 IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX/USA, 6-11 June 2004, vol. 3, pp. 1995-1998. [50] T. Yoshida, T. Deguchi, K. Kawaguchi, and A. Nakagawa, “Ka-band planar Gunn oscillators using flip-chip GaAs Gunn diodes fabricated by boron ion implantation,” 22nd Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2000, Seattle, WA/USA, 5-8 Nov. 2000, pp. 165-168. [51] K. Watanabe, T. Deguchi, and A. Nakagawa, “V-band planar Gunn oscillators and VCOs on AlN substrates using flip-chip bonding technology,” 1999 IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA/USA, 13-19 June 1999, vol. 1, pp. 13-16. [52] T. Yoshida, Y. Fukasawa, T. Deguchi, K. Kawaguchi, T. Sugiyama, and A. Nakagawa, “A low-phase-noise 76-GHz planar Gunn oscillator using flip-chip bonding technology,” 2005 European Microwave Conference, Paris, France, 4-6 Oct. 2005, vol. 1 [53] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, Feb. 1966, vol. 54, pp. 329–330. [54] M.Q. Bao, Y.G. Li, and H. Jacobsson, “A 21.5/43-GHz dual-frequency balanced Colpitts VCO in SiGe technology,” IEEE Journal of Solid-State Circuits, vol. 39, issue 8, pp. 1352-1355, Aug. 2004. [55] H. Li, and H.M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE Journal of Solid-State Circuits, vol. 38, issue 2, pp. 184-191, Feb. 2003. [56] A. Kurdoghlian, M. Sokolich, M. Case, M. Micovic, S. Thomas III, and C.H. Fields, “38 GHz low phase noise CPW monolithic VCOs implemented in manufacturable AlInAs/InGaAs HBT IC technology,” 22nd Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2000, Seattle, WA/USA, 5-8 Nov. 2000, pp. 99-102. [57] D.K. Shaeffer, and S. Kudszus, “Performance-optimized microstrip coupled VCOs for 40-GHz and 43-GHz OC-768 optical transmission,” IEEE Journal of Solid-State Circuits, vol. 38, issue 7, pp. 1130-1138, July 2003. [58] D.K. Hien, M. Stubs, T. Laneve, C. Glaser, and D. Drolet, “Ka-band MMIC voltage-controlled oscillators,” 1997 Asia-Pacific Microwave Conference Proceedings, 1997. APMC '97, Hong Kong, 2-5 Dec. 1997, vol. 2, pp. 545-548. [59] M.S. Heins, D.W. Barlage, M.T. Fresina, D.A. Ahmari, Q.J. Hartmann, G.E. Stillman, and M. Feng, “Low phase noise Ka-band VCOs using InGaP/GaAs HBTs and coplanar waveguide,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 1997, Denver, CO/USA, 8-11 June 1997, pp. 215-218. [60] F. Herzel, C.S. Choi and E. Grass, “Frequency synthesis for 60-GHz OFDM transceivers,” European Conference on Wireless Technology, 2008. EuWiT 2008, Amsterdam, Netherlands, 27-28 Oct. 2008, pp. 77-80. [61] A. Kanda, T. Hirota, H. Okazaki, and M. Nakamae, “An MMIC chip set for a V-band phase-locked local oscillator,” 17th Annual IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1995. Technical Digest 1995, San Diego, CA/USA, 29 Oct.-1 Nov. 1995, pp. 259-262. [62] T. Kashiwa, T. Ishida, T. Katoh, H. Kurusu, H. Hoshi, and Y. Mitsui, “V-band high-power low phase-noise monolithic oscillators and investigation of low phase-noise performance high drain bias,” IEEE Trans. Microwave Theory and Tech., vol. 46, issue 10, pp. 1559-1565, Oct. 1998. [63] P.C. Huang, and M.D. Tsai, G.D. Vendelin, H. Wang, C.H. Chen, and C.S. Chang, “A Low-Power 114-GHz Push–Push CMOS VCO Using LC Source Degeneration,” IEEE Journal of Solid-State Circuits, vol. 42, issue 6, pp. 1230-1239, June 2007. [64] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y. Tsutsumi, and I. Seto, “A 60-GHz CMOS Receiver Front-End With Frequency Synthesizer,” IEEE Journal of Solid-State Circuits, vol. 43, issue 4, pp. 1030-1037, April 2008. [65] H. Wang K.W. Chang, D.C.-W. Lo, L.T. Tran, J.C. Cowles, T.R. Block, G.S. Dow, A. Oki, D.C. Streit, and B.R. Allen, “A 62-GHz monolithic InP-based HBT VCO,” IEEE Microwave and Guided Wave Letters, [see also IEEE Microwave and Wireless Components Letters], vol. 5, issue 11, pp. 388-390, Nov. 1995. [66] V. Jain, B. Javid, and P. Heydari, “A 24/77GHz dual-band BiCMOS frequency synthesizer,” IEEE Custom Integrated Circuits Conference, 2008. CICC 2008, San Jose, CA/USA, 21-24 Sept. 2008, pp. 487-490. [67] R. Harrington, Time Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961, p. 156. [68] P. Dixon, “Cavity-Resonance Dampening,” IEEE Microwave Magazine, vol. 6, issue 2, pp. 74-84, June 2005. [69] J. Capwell, T. Weller, D. Markell and L. Dunleavy, “Automation and Real-time Verification of Passive Component S-parameter Measurements Using Loss Factor Calculations,” Microwave Journal, vol. 47, issue 3, March 2004. [70] D. Gamota and C. Melton, “Materials to integrate the solder reflow and underfill encapsulation processes for flip chip on board assembly,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, vol. 21, issue 1, pp. 57-65, Jan. 1998. [71] W. Deal, “Coplanar waveguide basics for MMIC and PCB design,” IEEE Microwave Magazine, vol. 9, issue 4, pp. 120-133, Aug. 2008. [72] Hung-Pin Chang, Jiangyuan Qian, B.A. Cetiner, F. De Flaviis, M. Bachman, and G.P. Li, “Design and process considerations for fabricating RF MEMS switches on printed circuit boards,” Journal of Microelectromechanical Systems, vol. 14, issue 6, pp. 1311-1322, Dec. 2005. [73] Muhammad AKRAM, Athar JAVED and Tasneem Zahra RIZVI, “Dielectric Properties of Industrial Polymer Composite Materials,” Turk J. Phys., 29, pp. 355-362, 2005. [74] G. E. Ponchak, J. Papapolymerous, and M. M. Tentzeris, “Excitation of Coupled Slotline Mode in Finite-Ground CPW With Unequal Ground-Plane Widths,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 713-717, Feb. 2005. [75] E.Y. Chang, G.T. Cibuzar, and K.P. Pande, “Passivation of GaAs FET's with PECVD silicon nitride films of different stress states,” IEEE Transactions on Electron Devices, vol. 35, issue 9, pp. 1412-1418, Sep. 1988.
|