跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:章詠湟
研究生(外文):Chang, Yung-Huang
論文名稱:利用原子層沉積與陽極氧化鋁膜製備一維二氧化鈦奈米結構陣列及其光學特性研究
論文名稱(外文):Fabrication and optical characteristics of 1-D TiO2 nanostructure arrays by atomic layer deposition and anodic aluminum oxide
指導教授:陳智陳智引用關係
指導教授(外文):Chen, Chih
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:143
中文關鍵詞:原子層化學氣相沉積二氧化鈦奈米結構構陣光學特性蕭特基接點能帶圖
外文關鍵詞:atomic layer depositionTiO2 nanostructure arraysoptical characteristicsSchottky-contactenergy band diagram
相關次數:
  • 被引用被引用:4
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:160
  • 收藏至我的研究室書目清單書目收藏:0
利用原子層化學氣相沉積和陽極氧化鋁模板,在400 ?aC p-type矽基材上,製備垂直排列的TiO2奈米管與TiO2薄膜。TiO2奈米管的管壁厚度與TiO2薄膜的膜厚可藉由沉積循環數精準地控制。經由XRD與擇區繞射影像圖分析,TiO2奈米管與TiO2薄膜為多晶銳鈦礦(anatase)結構。TiO2奈米管與TiO2薄膜的吸收能力分別隨管壁厚度與膜厚增加而上升。相較於TiO2薄膜,TiO2奈米管擁有較大的表面積,因此展現出優異的Photoluminescence光譜特性。
由於吸收能力隨厚度增加而上升,因此金屬-半導體-金屬結構的Ti/TiO2/Ti電導偵測器展現出與厚度相關的光反應。對ITO/TiO2/Si光二極體而言,光電流由TiO2/Si異質接面(PN接面)或是ITO/TiO2異質接面(蕭特基接點,Schottky contact)所控制,但是其方向相反。在短路迴路下,不論正負極接在ITO上,由於TiO2/Si異質接面擁有較大的空乏區與電位勢,因此主宰光載子傳輸方向。在0 V至-1 V偏壓下,詳細的光電流源轉換過程,由TiO2/Si異質接面轉換至ITO/TiO2接面,可經由光響應圖形偵測得知。
研究蕭特基接點與歐姆接點(Ohmic contact)對於ITO/TiO2/Si與Ti/TiO2/Si光二極體光電響應之影響。結果顯示Ti/TiO2/Si光二極體為一個與厚度相關的光電反應。這是由於Ti/TiO2為歐姆接點對光電流量沒有任何貢獻,TiO2/Si異質接面控制光電流量之大小與傳輸方向。對ITO/TiO2/Si光二極體而言,蕭特基接點的ITO/TiO2接面調節TiO2/Si所控制的光電流量值,不再呈現和Ti/TiO2/Si光二極體一致的管壁厚度正比線性關係。
研究異質接面對於TiO2奈米管與TiO2/AAO奈米管光電反應之影響。相較於TiO2奈米管,由於空間侷限效應,TiO2/AAO奈米管展現較優異的PL光譜特性。在短路迴路下,由於光產生電子-電洞對在PL光譜上的再結合,TiO2/AAO奈米管的量子效率表現不夠傑出。藉由在高電場下抑制光產生電子-電洞對的再結合,與AAO空乏區的光產生電子注入,使得TiO2/AAO奈米管的量子效率獲得改善。
在紫外光開關照射下,奈米尺寸架構中,傳統的能帶圖觀念很成功地被運用解釋載子傳輸方向機制。相較於材料本身光導特性,這些研究工作強調異質接面也擁有相同的重要性。

Vertically aligned TiO2 nanotubes and TiO2 thin film are fabricated on p-type Si substrates by using atomic layer deposition system with anodic aluminum oxide template at 400 ?aC. The wall-thickness of TiO2 nanotubes and the thickness of TiO2 thin films can be controlled precisely by controlling the deposition cycle number. A polycrystalline anatase structure for TiO2 nanotubes and TiO2 thin film was confirmed by XRD and selected area diffraction pattern. The absorbability for TiO2 nanotubes and TiO2 thin film was improved as an increase of the film thickness. Due to the larger surface area, the fabricated TiO2 nanotubes exhibit an excellent performance on Photoluminescence characteristics, compared with TiO2 thin film.
Metal-semiconductor-Metal (MSM) structured Ti/TiO2/Ti detectors exhibited a highly thickness-dependent photoresponse due to the absorbability was enhanced as an increase of thickness. For the ITO/TiO2/Si diode, the photocurrent is controlled by either the TiO2/Si hetero-junction (p-n junction) or the ITO/TiO2 hetero-junction (Schottky contact), which is in the opposite direction. In short circuit, no matter positive or negative electrode applied on ITO, the TiO2/Si hetero-junction dominates the photocarrier transportation direction due to the larger space charge region and potential gradient. For photocurrent sources, the detail transfer process from TiO2/Si hetero-junction to ITO/TiO2 hetero-junction was examined in the time-depended photoresponse at the biases of 0 V to -1 V.
Schottky-contact and Ohmic-contact effects upon the photoresponses of ITO/TiO2/Si and Ti/TiO2/Si nanotube-based photodiodes were investigated. Results show that the Ti/TiO2/Si diode exhibits a highly thickness-dependent photoresponse. This is because the photocurrent is driven by the p-n junction at TiO2/Si alone and it faces no retarding at the Ohmic contact of Ti/TiO2. For the ITO/TiO2/Si diode, the Schottky contact at ITO/TiO2 regulates photocurrent overriding TiO2/Si as a result of higher efficiency in photogeneration, leading to the opposite response compared with the Ti/TiO2/Si diode.
The hetero-junction effects on the photoresponses of TiO2 and TiO2/AAO nanotube-based photodiodes were investigated. Due to the space confinement effect, TiO2/AAO nanotubes revealed excellent PL characteristics, compared with TiO2 nanotubes. In short circuit, due to the recombination of photogenerated electron-hole pairs upon PL spectra, the performance of quantum efficiency in TiO2/AAO nanotubes was not splendid. It was improved for TiO2/AAO nanotubes on quantum efficiency by restraining the recombination in high field and the injecting the photogenerated electron from AAO depletion region.
For the nano-scale framework, the classical knowledge of energy band diagram was successfully used to explain the mechanism of the carrier transportation direction under UV on/off illumination. These works emphasize the equal importance of the hetero-junctions as compared with materials’ photoconductive properties.

目錄
中文摘要 Ⅰ
英文摘要 Ⅲ
誌謝 Ⅵ
目錄 Ⅷ
表目錄 ⅩⅢ
圖目錄 ⅩⅣ
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 原理機制與文獻回顧 5
2-1 二氧化鈦 5
2-1-1 二氧化鈦結構 5
2-1-2 二氧化鈦合成方式 6
2-1-3 二氧化鈦之應用 9
2-2 陽極氧化鋁 14
2-2-1 AAO成長機制 14
2-2-2 影響AAO形貌之因素 16
2-3 原子層化學氣相沉積 21
2-3-1 原子層化學氣相沉積之成長機制 21
2-3-2 溫度對原子層化學氣相沉積之影響 23
2-4 光電轉換原理 29
2-4-1 pn接面光二極體 29
2-4-2 光電導檢測器 30
2-4-3 量子效率與響應率 32
第三章 實驗方法與步驟 36
3-1 AAO模板製備 36
3-2 ALD沉積製程與奈米管柱陣列製作 40
3-3 量測電極製備 43
3-4 量測與分析儀器設備 45
3-4-1 紫外光/可見光光譜儀 45
3-4-2 光激發螢光量測 46
3-4-3 X光粉末繞射儀 47
3-4-4 場發射掃瞄式電子顯微鏡 47
3-4-5 穿透式電子顯微鏡 48
3-4-6 光電特性量測 50
第四章 結果與討論 55
4-1 TiO2薄膜成長 55
4-1-1 薄膜形貌與成長速率 55
4-2 TiO2奈米管成長 60
4-2-1 TiO2奈米管形貌與成長速率 60
4-3 製備TiO2奈米管 67
4-4 TiO2晶相結構 72
4-5 TiO2對UV-visible光線之穿透率與吸收能力 75
4-5-1 TiO2薄膜對UV-visible光線之穿透率與吸收能力 75
4-5-2 TiO2奈米管對UV-visible光線之穿透率與吸收能力 75
4-6 PL光譜特性 80
4-6-1 TiO2薄膜之PL光譜特性 80
4-6-2 TiO2奈米管之PL光譜特性 81
4-7 MSM光二極體之紫外光響應率 92
4-7-1 TiO2薄膜、TiO2奈米管與電極之製備 92
4-7-2 TiO2薄膜與TiO2奈米管之紫外光響應率 92
4-8 兩個異質接面對紫外光光響應之影響 96
4-8-1 TiO2奈米管與ITO電極之製備 96
4-8-2 光電流來源之確認 96
4-8-3 電流-電壓特性量測 97
4-8-4 短路迴路下之光電流量測 97
4-8-5 光電流來源區域之轉換 99
4-8-6 光電轉換效率之比較 101
4-9 歐姆接點與蕭特基接點對紫外光光響應之影響 109
4-9-1 TiO2奈米管與電極之製備 109
4-9-2 光電流來源之確認 109
4-9-3 穿透率量測 110
4-9-4 電流-電壓特性量測 110
4-9-4-1 Ti/TiO2/Si光二極體 110
4-9-4-2 ITO/TiO2/Si光二極體 111
4-9-5 正負偏壓對光電轉換效率之影響 113
4-9-6 光反應延遲現象 114
4-9-6-1 ITO和Ti電極之影響 114
4-9-6-2 循環數之影響 115
4-10 AAO/TiO2異質接面對紫外光光響應之影響 124
4-10-1 TiO2奈米管與ITO電極之製備 124
4-10-2 TiO2奈米管與AAO模板之吸收能力 124
4-10-3 PL光譜特性分析 124
4-10-4 短路迴路下之光電轉換效率 126
4-10-5不同偏壓下之光電轉換效率 127
第五章 結論 134
參考文獻 139
[1] S. Iijima, Nature, 354, 56 (1991).
[2] Y. Lei and W. K. Chim, Chem. Mater., 17, 580 (2005).
[3] P. L. Chen, C. T. Kuo, F. M. Pan and T. G. Tsai, Appl. Phys. Lett., 84, 3888 (2004).
[4]S. Link and M. A. El-Sayed, J. Phys. Chem. B, 103, 8410 (1999).
[5] K. Shin, K. A. Leach, J. T. Goldbach, D. H. Kim, J. Y. Jho, M. Tuominen, C. J. Hawker and T. P. Russell, Nano. Lett., 2, 933 (2002).
[6] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 14, 3160 (1998).
[7] J. M. Macák, H. Tsuchiya and P. Schmuki, Angew. Chem. Int. Ed., 44, 2100 (2005).
[8] Y. Xia, P. Yang, Y. Sun1, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater., 15, 353 (2003).
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).
[10] W. A. de Heer, A. Châtelain and D. Ugarte, Science, 270, 1179 (1995).
[11] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, Nano. Lett., 2, 717 (2002).
[12] Z. L. Wang, Materials Science and Engineering R, 64, 33 (2009).
[13] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nature Materials, 4, 455 (2005).
[14] Y. Qin, X. Wang, and Z. L. Wang, Nature, 451, 14 (2008).
[15] P. L. Chen, W. J. Huang, J. K. Chang, C. T. Kuo and F. M. Pana, Electrochemical and Solid-State Letters, 8, H83 (2005).
[16] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, Appl. Phys. Lett., 76, 2071 (2000).
[17] M. H. Yang, K. B. K. Teo, L. Gangloff, W. I. Milne, D. G. Hasko, Y. Robert and P. Legagneux, Appl. Phys. Lett., 88, 113507 (2006).
[18] B. O'Regan and M. Grätzel, Nature, 353, 737 (1991).
[19] M. Grätzel, Nature, 414, 338 (2001).
[20] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc, 130, 4007 (2008).
[21] Il-D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo and H. L. Tuller, Nano. Lett., 6, 2009 (2006).
[22] T. Gao and T. H. Wang, Appl. Phys. A, 80, 1451 (2005).
[23] P. Hoyer, Langmuir, 12, 141 (1996).
[24] M. Adachi, Y. Murata, M. Harada and S. Yoshikawa, Chem. Lett., 942 (2000).
[25] M. Adachi, Y. Murata, I. Okada and Yoshikawa, J. Electrochem. Soc., 150, G488 (2003).
[26] W. J. Dawson, Cream. Bull., 67, 1673 (1988).
[27] J. Yang, S. Mei and M. F. Rerreira, J. Am. Chem. Soc., 83, 1361 (2000).
[28] M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi and M. Toyoda, Inter. J. Inorg. Mater. 3, 809 (2001).
[29 H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater., 7, 663 (1995).
[30] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara., Langmuir, 14, 3160 (1998).
[31] M. S. Sander, M. J. Côté, W. Gu, B. M. Kile and C. P. Tripp, Adv. Mater., 16, 2052 (2004).
[32] L. K. Tan, M. A. S Chong and H. Gao, J. Phys. Chem. C, 112, 69 (2008).
[33] J. H. Park, S. Kim and A. J. Bard, Nano. Lett., 6, 24 (2006).
[34] Z. Liu, D. D. Sun, P. Guo and J. O. Leckie, Nano. Lett., 7, 1081 (2007).
[35] A. L. Linsebigler, G. Lu and J. T. Yates, Jr., Chem. Rev., 95, 735 (1995).
[36] N. N. Rao and S. Dube, Int. J. Hydrogen energy, 21, (1996) 95.
[37] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett., 5, 191 (2005).
[38] J.H. Park, O.O. Park and S. Kim, Appl. Phys. Lett., 89, 163106 (2006).
[39] S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn and P. Schmuki, Nano Lett., 7, 1286 (2007).
[40] S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Jr., Science, 297, 2243 (2002).
[41] T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett., 81, 454 (2002).
[42] J. H. Park, S. Kim and A. J. Bard, Nano Lett., 6, 24 (2006).
[43] A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey and P. Schmuki, Nano Lett., 6, 1080 (2006).
[44] T. Ma, M. Akiyama, E. Abe and I. Imai, Nano Lett., 5, 2543 (2005).
[45] M. Jakob, H. Levanon and P. V. Kamat, Nano Lett., 3, 353 (2003).
[46] Y. Gu, E.-S. Kwak, J. L. Lensch, J. E. Allen, T. W. Odom and L. J. Lauhon, Appl. Phys. Lett., 87, 043111 (2005).
[47] P. Deb, H. Kim, Y. Qin, R. Lahiji, M. Oliver, R. Reifenberger and T. Sands, Nano Lett., 6, 2893 (2006).
[48] Y. Jin, J. Wang, B. Sun, J. C. Blakesley and N. C. Greenham, Nano Lett., 8, 1649 (2008).
[49] Z.Y. Fan, D. Dutta, C.J. Chien, H.Y. Chen, E.C. Brown, P.C. Chang and J.G. Lu, Appl. Phys. Lett., 89, 213110 (2006).
[50] W. Dai, X. Wang, P. Liu, Y. Xu, G. Li, and X. Fu, J. Phys. Chem. B, 110, 13470 (2006).
[51] H. Chen, S. Chen, X. Quan, H. Yu, H. Zhao and Y. Zhang, J. Phys. Chem. C, 112, 9285 (2008).
[52] J.Salfi, U.Philipose, C.F.de Sousa, S.Aouba and H.E.Ruda, Appl. Phys. Lett., 89, 261112 (2006).
[53] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, Nano Lett., 7, 1003 (2007).
[54] H. K. Yadav, K. Sreenivas and V. Gupta, Appl. Phys. Lett., 90, 172113 (2007).
[55] R. Agrawal, P. Kumar, S. Ghosh and A. K. Mahapatro, Appl. Phys. Lett., 93, 073311 (2008).
[56] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, Appl. Phys. Lett., 83, 2943 (2003).
[57] C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen and R. H. Horng, Crystal Growth & Design, 9, 4555 (2009).
[58] X. P. Shen, A. H. Yuan, Y. M. Hu, Y. Jiang, Z. Xu and Z. Hu, Nanotechnology, 16, 2039 (2005).
[59] M. Q. Israr, J. R. Sadaf, L. L. Yang, O. Nur, M. Willander, J. Palisaitis and P. O. Å. Persson, Appl. Phys. Lett., 95, 073114 (2009).
[60] Phase diagrams for Ceramists, The American Ceramic Society, inc., 76, 4150 (1975).
[61] U. Diebold, Surf. Sci. Reports, 48, 53 (2003).
[62] J. K. Burdett, T. Hughbabds, J. M. Gordon, J. W. Richardson Jr. and J. V. Smith, J. Am. Chem. Soc., 109, 3639 (1987).
[63] T. E. Weirich, M. Winterer, S. Seifried, H. Hahn and H. Fuess, Ultramicroscopy, 81, 263 (2000).
[64] Powder Diffraction File, Card No.21-1272, JCPDS-International Centre for Diffraction Data, Swarthmore (1997).
[65] J. Muscat, N. M. Harrison and G. Thornton, Physical Review B, 59, 2310 (1999).
[66] Powder Diffraction File, Card No.21-1276, JCPDS-International Centre for Diffraction Data, Swarthmore (1997).
[67] T Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 14, 3160 (19998).
[68] B. B. Lakshmi, C. J. Patrissi and C. R. Martin, Chem. Mater., 9, 2544 (1997).
[69] P. Löbl, M. Huppertz and D. Mergel, Thin Solid Films, 251, 72 (1994).
[70] H. K. Pulker, G. Paesold and E. Ritter, Applied Optics, 15, 2986 (1976).
[71] H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid and F. Lévy, J. Appl. Phys., 75, 2042 (1994).
[72] H. Yoshitake, T. Sugihara and T. Tatsumi, Chem. Mater., 14, 1023 (2002).
[73] W. G. Lee, S. I. Woo, J. C. Kim, S. H. Choi and K. H. Oh, Thin Solid Films, 237, 105 (1994).
[74] J. Aarik, A. Aidla, H. MaÈndar and T. Uustare, Appl. Surf. Sci., 172, 148 (2001).
[75] H. E. Cheng and C. C. Chen, J Electrochem. Soc., 155, D604 (2008).
[76] 黃群勝,“原子層沉積二氧化鈦薄膜之結構與光響應特性研究”,南台科技大學九十四學年電機工程研究所碩士論文.
[77] A.Fujishima and K. Honda, Nature, 238, 37 (1972).
[78] Y. Yamada, H. Uyama, T. Murata and H. Nozoye, J. Vac. Sci. Tecnhnol., A 19, 2479 (2001).
[79] Y. Nosaka and M. A. Fox, J. Phys. Chem., 92, 1983 (1988).
[80] D. Routkevitch, A. N. Govyadinov and P. P. Mardilovich, MEMS., 2, 39 (2000).
[81] G. E. Thompson, Thin solid films, 297, 192 (1997).
[82] O. Jessensky, F. Müller and U. Gösele, Appl. Phys. Lett., 72, 1173 (1998).
[83] A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele, J. Appl. Phys., 84, 6023 (1998).
[84] A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele, Adv. Mater., 11, 483 (1999).
[85] Y. Kanamori, K. Hane, H. Sai and H. Yugami, Appl. Phys. Lett., 78, 142 (2001).
[86] S. K. Thamida and H. C. Chang, Chaos, 12, 240 (2002).
[87] T. Suntola and J. Antson, US Patent 4 058 430 (1977)
[88] T. Suntola, Atomic layer epitaxy, in Handbook of Crystal Growth, Ed. D. T. J. Hurle, Thin Films and Epitaxy, Part B: Growth Mechanisms and Dynamics, Elsevier, Amsterdam, 3, 14 (1994)
[89] J. Aarik, A. Aidlaa, H. Mändar and Väino Sammelselg, J. Cryst. Growth, 220, 531 (2000).
[90]章詠湟,陳智,彭智龍,原子層沉積系統原理及其應用,科儀新知,民國96年, 159, 33-43.
[91] T. Suntola, A. J. Pakkala and S. G. Lindfors, US Patent 4 413 022 (1983).
[92] S. O. Kasap, Optoelectronics and Photonics principles, Prentice-Hall published.
[93] E. Monroy, F. Omnès and F. Calle, Semicond. Sci. Technol., 18, R33 (2003).
[94] H. L. Xue, X. Z. Kong, Z. R. Liu, C. X. Liu, J. R. Zhou, W. Y. Chen, S. P. Ruan and Q. Xu, Appl. Phys. Lett., 90, 201118 (2007).
[95] X. Z. Kong, C. X. Liu, W. Dong, X. D. Zhang, C. Tao, L. Shen, J. R. Zhou, Y. F Fei, and S. P. Ruan, Appl. Phys. Lett., 94, 123502 (2009).
[96] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and Ulrich Gösele, Adv. Mater., 19, 917 (2007)
[97]楊慶榮,“利用氧化鋁膜為模板製備自組裝奈米結構於矽基材之研究”,交通大學九十六學年材料科學與工程學系博士論文.
[98] J. M. Shieh, Y. F. Lai, Y. C. Lin and J. Y. Fang, 奈米通訊, 第十二卷第二期, P28.
[99] M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 91, 4305 (1987).
[100] N. Serpone, D. Lawless and R. Khairutdinovt, J. Phys. Chem., 99, 16646 (1995).
[101] S. Monticone, R. Tufeu, A. V. Kanaev, E. Scolan and C. Sanchez, Appl. Surf. Sci., 162-163, 565 (2001).
[102] D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi and H. Haneda, J. Solid State Chem., 178, 3293 (2005).
[103] D. Fang, K. Huang, S. Liu and J. Huang, J. Braz. Chem. Soc., 19, 1059 (2008).
[104] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen and S. X. Wang, Appl. Phys. Lett., 78, 1125 (2001).
[105] J. M. Wu, H. C. Shih and W. T. Wu, J. Vac. Sci. Technol. B, 23, 2122 (2005).
[106] K. S. Brammer, S. Oh, J. O. Gallagher and S. Jin, Nano Lett., 8, 786 (2008).
[107] Y. H. Chang, C. M. Liu, Y. C. Tseng, C. Chen, C. C. Chen and H. E. Cheng, Nanotechnology, 21, 225602 (2010).
[108] D. A. Neamen, Semiconductor Physics & Devices, Irwin published.
[109] K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao and D.Z. Shen, Solid-State Electron., 51, 757 (2007).
[110] Y. Y. Lin, C. W. Chen, W. C. Yen, W. F. Su, C. H. Ku and J. J. Wu, Appl. Phys. Lett., 92, 233301 (2008).
[111] H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid and F. Lévy, J. Appl. Phys., 75, 2042 (1994).
[112] A. M. Cowley and S. M. Sze. J Appl. Phys., 36, 3212 (1965).
[113] J. W. Yoon, T. Sasaki and N. Koshizaki, Thin Solid Films, 483, 276 (2005).
[114] M. Dutta and D. Basak, Appl. Phys. Lett., 92, 212112 (2008).
[115] I.-S. Jeong, J.H. Kim and S. Im, Appl. Phys. Lett., 83, 2946 (2003).
[116] Y. Du, W. L. Cai, C. M. Mo, J. Chen, L. D. Zhang and X. G. Zhu, Appl. Phys. Lett., 74, 2951 (1999).
[117] Y. Shen, R. P. Jia, H. Q. Luo, X. G. Chen, D. S. Xue, Z. D. Hu, Spectrochimica Acta Part A, 60, 1007 (2004).
[118] H. Date, H. Tomozawa, T. Takamasa, K. Okamoto and M. Shimozuma, J. J. Appl. Phys., 46, 417 (2007).
[119] E.d Sun, F. H. Su, Y. T. Shih, H. L. Tsai, C. H. Chen, M. K. Wu, J. R. Yang and M. J. Chen, Nanotechnology, 20, 445202 (2009).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top