跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳岐穎
研究生(外文):Chen, Qi-Ying
論文名稱:不同估計方法對資產配置的影響
論文名稱(外文):Portfolio Allocation with Different Approaches
指導教授:周幼珍周幼珍引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:43
中文關鍵詞:Markowitz均異最適化模型資產配置Black-litterman模型貝氏估計
外文關鍵詞:Mean-Variance modelAsset AllocationBlack-Litterman modelBayesian approach
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
一般傳統上常討論到使用Markowitz 的均異最適化(mean-variance optimization)的方式進行資產配置。由於Markowitz模型有估計誤差極大化的傾向,可發現報酬率些微改變將造成重大影響,因此我們必須尋找較佳的方法估計報酬率以及變異數,以求得較合理之投資權重。
Black and Litterman 以及其他學者運用不同的資訊,提出相對應的報酬率或變異數的貝氏估計式,以改善Markowitz模型的缺點。本研究在Black and Litterman模型上做了應用,本研究不僅估計報酬率同時也一起估計變異數。在根據這些不同的估計方法,創造出最佳的資產配置,並且比較傳統Markowitz模型、Bootstrap法及各種貝氏估計法所得的投資組合Sharpe ratio。
實證結果在我們的資料上發現在Black and Litterman模型與Shrinkage下,會得到比較高的Sharpe ratio。由於此兩種方法不僅對報酬率的估計上做了修正,也對變異數方面做了估計,可以得到一個風險比較小的投資組合。表示此兩種方法在我們的資料下,風險及報酬的表現優於其他兩種方法。

This paper applies some popular asset allocation models, like Black-Litterman model on an index fund. First, an overview is given of the foundations of modern portfolio theory with the mean-variance model. Although the model inspired a rich field of science and was used by many investors, it does have some obvious flaws. Next, we discuss some improvements that could be made over the mean-variance model. Finally, we compare the performance of the bootstrap methodology, Black-Litterman model, Bayesian approach and shrinkage methodology with the Sharpe ratio. The conclusion in our data can be drawn that BL-model improves the mean-variance model and has a better performance than other methods.
1、Introduction 1
2、Literature Review 2
2.1 Introduction of Index fund 2
2.1.1 The advantages of Index Fund 3
2.2 Markowitz Mean-Variance Portfolio Selection Model 3
2.2.1 Portfolio Selection Problem Formulations 4
2.3 The Black Litterman Model 5
3、 Methodology 8
3.1 Bootstrap Methodology 8
3.2 Black-Litterman Methodology 9
3.2.1 Computing the CAPM Equilibrium Excess Returns 11
3.2.2 Computing Via Reverse Optimization 11
3.2.3 Specifying the Views 13
3.2.4 Predicting of Covariance Matrix by GARCH Model 14
3.2.5 The Black-Litterman Formula 15
3.3 Bayesian Approach 17
3.4 Shrinkage Methodology 18
4、Empirical Results 19
4.1 Data 19
4.2 Foreign Exchange Risk 20
4.3 Markowitz Method 20
4.4 Bootstrap Method 21
4.5 Black-Litterman Method 21
4.6 Bayesian Approach 22
4.7 Shrinkage Method 23
4.8 Comparison of Markowitz Method and Other Approaches 23
4.8.1 Comparison of Portfolio Weights 23
4.8.2 Comparisons of Return, Risk and Sharpe Ratio 24
5、 Conclusion and Suggestions 25
5.1 Conclusion 25
5.2 Suggestions 25
6、 Reference 26
Appendix A 41
[1] Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis (2nd ed.), John Wiley & Sons, Inc.
[2] Beach, L and Orlov, G. (2007), “An Application of the Black-Litterman Model with EGARCH-M-Derived Views for International Portfolio Management”, Financial Markets and Portfolio Management, vol. 21, issue 2, pages 147-166
[3] Bevan, A. and K. Winkelmann, (1998), “Using the Black-Litterman Global Asset Allocation Model: Three Years of Practical Experience,” Goldman Sachs Fixed Income Research, June 1998.
[4] Black, F. and R. Litterman, (1991), “Asset allocation: combining investor views with market equilibrium”, The Journal of Fixed Income, 7-18.
[5] Black, F. and R. Litterman, (1991), “Global asset allocation with equities, bonds and currencies”, Fixed Income Research, Goldman, Sachs & Co.
[6] Black, F. and R. Litterman, (1992), “Global portfolio optimization”, Financial Analysts Journal 48, no. 5, 28-43.
[7] Engle, R. and T. Bollerslev, (1986), “Modeling the persistence of conditional variance. Econometric Reviews”, Volume 5, Issue 1, 1986, Pages 1 - 50
[8] He, G. and R. Litterman, (1999), “The intuition behind Black-Litterman model portfolio”, Investment Management Research, Goldman, Sachs & Co.
[9] Idzorek, T. (2004), “A Step-By-Step Guide to the Black-Litterman Model – Incorporating User-specified Confidence Level”, Zephyr Associates Inc.
[10] Jay Walters, CFA (2008), “The Black-Litterman Model: A Detailed Exploration”
[11] Laster, D. S., (1998), “Measuring Gains from International Equity Diversification: The Bootstrap Approach,” Journal of Portfolio Management, 52-60.
[12] Ledoit, O., and M, Wolf. (2003), “Improved estimation of the covariance matrix of stock returns with an application to portfolio selection.” Journal of Empirical Finance
Volume 10, Issue 5, December 2003, Pages 603-621
[13] Mankert, C. (2006), “The Black-Litterman Model – mathematical and behavioral finance approaches towards its use in practice”, University dissertation from Stockholm : KTH.
[14] Markowitz, H. (1952), Portfolio selection, The Journal of Finance 45, no. 1, 31-42.
[15] Michaud, R. (1989), “The Markowitz optimization enigma: is ‘optimized’ optimal?” Financial Analysts Journal 45, no. 1, 31-42.
[16] Rachev, Hsu, Bagasheva and Frank (2008), Bayesian Methods in Finance, John Wily & Sons, Inc.
[17] Satchell, S. (2000), “Chapter 3: A demystification of the Black-Litterman model: Managing quantitative and traditional portfolio construction”. Forecasting Expected Returns in the Financial Markets.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top