# 臺灣博碩士論文加值系統

(44.201.92.114) 您好！臺灣時間：2023/03/31 10:22

:::

### 詳目顯示

:

• 被引用:0
• 點閱:193
• 評分:
• 下載:27
• 書目收藏:1
 傳統的 c 管制圖通常是根據卜瓦松分佈的信賴區間來建構的管制圖。當監控分佈的參數已知時，現有的 c 管制圖有令人滿意的監控結果，然而，當此參數未知時，現有的 c 管制圖則會遭遇到型一誤差過大的缺點。我們在這研究論文中，提出利用卜瓦松分佈的容許區間來建構 c 管制圖。藉由統計模擬和實際資料的分析顯示，新的 c 管制圖在許多情況都優於現有的 c 管制圖。
 In the previous studies, c charts are usually constructed by confidence intervals for the mean of a poisson distribution. When the mean is known, the existing c charts may lead to a satisfactory result, However, when the mean is unknown, the existing c charts suffer the drawback of large type I error. In this study, c charts based on tolerance intervals for the poisson distribution are proposed. A numerical study shows the proposed c charts outperform the existing ones.
 ContentsChinese Abstract iEnglish Abstract iiAcknowledgement iiiTable of Contents ivList of Tables vList of Figures vi1 Introduction 12 Existing methods 43 Improved c chart 194 Width comparison 205 Example 266 Conclusion 34
 [1] Agresti, A. and Coull, B. (1998). Approximate is better than ‘exact’ for interval estimation of binomial proportions. The American Statistican, 52, 119-126.[2] Anscombe, F.J. (1948). The transformation of poisson, binomial and negative-binomial data. Biometrika, 35, 246-254.[3] Bartlett, M. S. (1936). The square root transformation in the analysis of variance. Supplement to the Journal of the Royal Statistical Society, 3, 68-73.[4] Bartlett, M. S. (1947). The use of transformations. Biometrics, 3, 39-52.[5] Brown, L. D., Cai, T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and Edgeworth expansions. The Annals of Statistics, 30, 160-201.[6] Brown, L. D., Cai, T. and DasGupta, A. (2003). Interval estimation in exponential families. Statistica Sinica, 13, 19-49.[7] Cai, T. (2005). One-sided confidence intervals in discrete distributions. Statistica Sinica, 19, 905-923.[8] Cai, T. and Wang, H. (2009). Tolerance intervals for discrete distributions in exponential families. Statistica Sinica, 19, 905-923.[9] Cummings, J., Zhou, C and Dive, C. (2011). Application of the β-expectation tolerance interval to method validation of the M30 and M65 ELISA cell death biomarkerassays. Journal of Chromatography B, 879, 887-93.[10] M. and Goh, T.N. (1997). Two-stage control charts for high yield processes. International Journal of Reliability, Quality and Safety Engineering, 4, 149-165.[11] Freeman, M.F. and Tukey, J.W. (1950). Transformations related to the angular and the square root. Annals of Mathematical Statistics, 21, 607V611.[12] Gebizlioglu, O.L. and Yagci, B. (2008). Tolerance intervals for quantiles of bivariate risks and risk measurement. Insurance: Mathematics and Economics, 42, 1022-1027.[13] Hahn, G.J. and Chandra, R. (1981). Tolerance intervals for Poisson and Binomial variables. Journal of Quality Technology, 13, 100-110.[14] Hahn, G.J. and Meeker, W.Q. (1991). Statistical Intervals: A Guide for Practitioners, 2nd edition. John Wiley & fSons Inc. New York.[15] Montgomery D.C. (2002). Introduction To Statistical Quality Control, 6th edition. John Wiley & fSons Inc. Hoboken, N.J..[16] Ryan T. P. and Schwertman, N. C. (1997). Optimal limits for attributes control charts. Journal of Quality Technology, 29, 86-98.[17] Wang, H. (2007). Estimation of the probability of passing the USP dissolution test. J Biopharm Stat, 17, 407-413.[18] Wang, H. (2009). Comparison of p control charts for low defective rate. Computational Statistics and Data Analysis, 53, 4210-4220.[19] Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22,209V212.[20] Winterbottom, A. (1993). Simple adjustments to improve control limits on attribute charts. Quality and Reliability Engineering International, 9, 105-109.[21] Xie, M., Goh, T.N. and Kuralmani, V. (2002). Statistical Models and Control Charts for High Quality Processes. Kluwer Academic Publishers, Boston, MA.[22] Zaslavsky, B.G. (2007). Calculation of tolerance limits and sample size determination for clinical trials with dichotomous outcomes. Journal of Biopharmaceutical Statistics, 17, 481-91.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 建構C管制圖監控檢驗不精確缺點數 2 偏斜常態資料管制圖之研究 3 利用無母數EWMA管制圖監控製程平均數/位置參數與變異數/尺度參數 4 包含區間, 多變量管制圖 及構面性資料統計品質管制 5 R，S和S2管制圖在製程變異數需估計時之修正管制界限 6 多選題排序應用的演算法 7 生物晶片遺失值的最小平方差收縮插補估計法 8 化學物混合交互作用之再研究 9 整合預防維護與x-bar管制圖之模擬分析 10 監控小幅度偏移的MEWMA-ICA-PCA管制圖 11 建構與應用高品質製程之單邊累計合格數管制圖 12 雙次抽樣np管制圖經濟性設計 13 具有多項異常原因之 X-bar管制圖經濟設計 14 利用共同信賴帶管制圖來監控一般線性輪廓 15 非線性模型下的最佳設計

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室