|
[1] Agresti, A. and Coull, B. (1998). Approximate is better than ‘exact’ for interval estimation of binomial proportions. The American Statistican, 52, 119-126. [2] Anscombe, F.J. (1948). The transformation of poisson, binomial and negative-binomial data. Biometrika, 35, 246-254. [3] Bartlett, M. S. (1936). The square root transformation in the analysis of variance. Supplement to the Journal of the Royal Statistical Society, 3, 68-73. [4] Bartlett, M. S. (1947). The use of transformations. Biometrics, 3, 39-52. [5] Brown, L. D., Cai, T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and Edgeworth expansions. The Annals of Statistics, 30, 160-201. [6] Brown, L. D., Cai, T. and DasGupta, A. (2003). Interval estimation in exponential families. Statistica Sinica, 13, 19-49. [7] Cai, T. (2005). One-sided confidence intervals in discrete distributions. Statistica Sinica, 19, 905-923. [8] Cai, T. and Wang, H. (2009). Tolerance intervals for discrete distributions in exponential families. Statistica Sinica, 19, 905-923. [9] Cummings, J., Zhou, C and Dive, C. (2011). Application of the β-expectation tolerance interval to method validation of the M30 and M65 ELISA cell death biomarker assays. Journal of Chromatography B, 879, 887-93. [10] M. and Goh, T.N. (1997). Two-stage control charts for high yield processes. International Journal of Reliability, Quality and Safety Engineering, 4, 149-165. [11] Freeman, M.F. and Tukey, J.W. (1950). Transformations related to the angular and the square root. Annals of Mathematical Statistics, 21, 607V611. [12] Gebizlioglu, O.L. and Yagci, B. (2008). Tolerance intervals for quantiles of bivariate risks and risk measurement. Insurance: Mathematics and Economics, 42, 1022-1027. [13] Hahn, G.J. and Chandra, R. (1981). Tolerance intervals for Poisson and Binomial variables. Journal of Quality Technology, 13, 100-110. [14] Hahn, G.J. and Meeker, W.Q. (1991). Statistical Intervals: A Guide for Practitioners, 2nd edition. John Wiley & fSons Inc. New York. [15] Montgomery D.C. (2002). Introduction To Statistical Quality Control, 6th edition. John Wiley & fSons Inc. Hoboken, N.J.. [16] Ryan T. P. and Schwertman, N. C. (1997). Optimal limits for attributes control charts. Journal of Quality Technology, 29, 86-98. [17] Wang, H. (2007). Estimation of the probability of passing the USP dissolution test. J Biopharm Stat, 17, 407-413. [18] Wang, H. (2009). Comparison of p control charts for low defective rate. Computational Statistics and Data Analysis, 53, 4210-4220. [19] Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal of the American Statistical Association, 22,209V212. [20] Winterbottom, A. (1993). Simple adjustments to improve control limits on attribute charts. Quality and Reliability Engineering International, 9, 105-109. [21] Xie, M., Goh, T.N. and Kuralmani, V. (2002). Statistical Models and Control Charts for High Quality Processes. Kluwer Academic Publishers, Boston, MA. [22] Zaslavsky, B.G. (2007). Calculation of tolerance limits and sample size determination for clinical trials with dichotomous outcomes. Journal of Biopharmaceutical Statistics, 17, 481-91.
|