(44.192.112.123) 您好!臺灣時間:2021/03/07 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王億婷
研究生(外文):Yi-Ting Wang
論文名稱:利用多解析度圖形分割之磁振造影影像腦區擷取法
論文名稱(外文):Multiresolutional Graph Cuts for Brain Extraction from MR Images
指導教授:陳永昇陳永昇引用關係
指導教授(外文):Yong-Sheng Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:67
中文關鍵詞:多解析度圖形分割磁振造影影像腦區擷取
外文關鍵詞:MultiresolutionalGraph CutBrain Extraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們提出一個多解析度圖形分割架構,以針對磁振造影頭部影像進行純腦和非腦區域的分割,並達到高敏感度和高精確度的純腦區域擷取目標。首先,我們所提出的方法從一個具有高敏感度和低精確度的腦部影像著手,接著將該影像從較低的解析度到較高的解析度一層一層地修剪非腦部的區域,以修正起始切割的結果。在解析度較低的純腦區域擷取結果會被傳遞到解析度較高的層級,用來做為圖形分割所需的前景和背景種子的限制。我們提出一個在處理非最高層解析度的影像時預先被定義的前景區域,以用來減少圖形分割中的捷徑問題。為了考慮亮度分布不均的影響,我們把每個解析度的影像分成不同數目的小立方體,以進行區域性的亮度分布估算,而圖形分割方法則個別被套用在每一立方體中。我們的實驗使用了四組資料來比較我們所提出的方法和四個文獻上的純腦區域擷取方法,這四組資料分別是: Internet Brain Segmentation Repository (IBSR) 的第一和第二組資料、Montreal Neurological Institute 的 BrainWeb 腦部模擬影像、與台北榮民總醫院的健康受試者。四個一起比較的純腦區域擷取方法則分別是:Brain Surface Extractor、Brain Extraction Tool、Hybrid Watershed algorithm 和 ISTRIP。在對純腦區域擷取的表現評估方面,使用 IBSR 的第一和第二組資料以及 BrainWeb 的腦部模擬影像時,我們的方法比其他的方法表現傑出;而在使用台北榮民總醫院的資料方面,我們所提方法的準確度和 BET 與 ISTRIP 是相當的。
We proposed a multiresolutional brain extraction framework which utilize graph cuts technique to classify head magnetic resonance (MR) images into brain and non-brain regions.Our goal is to achieve both high sensitivity and specificity results of brain extraction. Started with an extracted brain with high sensitivity and low specificity, we refine the segmentation results by trimming non-brain regions in a coarse-to-fine manner.
The extracted brain at the coarser level will be propagated to the finer level to estimate foreground/background seeds as constraints.
The short-cut problem of graph cuts is reduced by the proposed pre-determined foreground from the coarser level.
In order to consider the impact of the intensity inhomogeneities, we estimated the intensity distribution locally by partitioning volume images of each resolution into different numbers of smaller cubes.
The graph cuts method is individually applied for each cube.
The proposed method was compared to four existing methods, Brain Surface Extractor, Brain Extraction Tool, Hybrid Watershed algorithm, and ISTRIP, by using four data sets, the first and the second IBSR data set of the Internet Brain Segmentation Repository, BrainWeb phantom images from the Montreal Neurological Institute, and healthy subjects collected by Taipei Veterans General Hospital.
The performance evaluation for brain extraction, our method outperforms others for the first/second IBSR data set and BrainWeb phantom data set, and performs comparably with the BET and ISTRIP methods when using the VGHTPE data set.

1 Introduction 1
1.1 Brain extraction . . . . . . . . . . . . . 2
1.1.1 Related works of brain extraction . . . . . . . . . . . . . . . . . . 4
1.2 Max-flow and min-cut . . . ....... . . . . 9
1.2.1 Ford and Fulkerson max-flow algorithm .. . 9
1.2.2 Graph cuts . ... . . . . . . . . . . . . . 11
1.3 Motivation of this work . . . . . . . . . . . . 17
2 Multiresolutional graph cuts for brain extraction 19
2.1 Flowchart of multiresolutional brain extraction . 20
2.2 Removal of bright voxels in non-WM regions . . 22
2.3 Graph cuts for brain extraction . . . . . . . . 25
2.3.1 Edge weights in the graph cuts method .. . . . 25
2.3.2 Multiresolutional graph cuts for brain extraction . . . 30
2.4 Postprocessing to fill holes that dark brain region be classified as background by graph cuts . 33
3 Results for brain extraction 41
3.1 Image data sets for performance evaluation . . . . 42
3.2 Evaluation metrics for brain extraction . . 43
3.3 Experimental results . . . . . . . . . . 45
4 Discussion 59
5 Conclusions 63
[1] John Ashburner and Karl J. Friston. Voxel-Based Morphometry-The Methods.
NeuroImage, 11:805-821, 2000.

[2] Catriona D. Good, Ingrid S. Johnsrude, John Ashburner, John Ashburner, Karl J.
Friston, and Richard S. J. Frackowiak. A voxel based morphometric study of ageing
in 465 normal adult human brains. NeuroImage, 14:21-36, 2001.

[3] M. Kubicki, M. E. Shenton, D. F. Salisbury, Y. Hirayasu, K. Kasai, R. Kikinis, F. A.
Jolesz, and R. W. McCarley. Voxel-Based Morphometric Analysis of Gray Matter
in First Episode Schizophrenia. NeuroImage, 17:1711-1719, 2002.

[4] Andrew M. McIntosh, Dominic E. Job, T. William J. Moorhead, Lesley K. Harrison,
Karen Forrester, Stephen M. Lawrie, and Eve C. Johnstone. Voxel-based morphometry
of patients with schizophrenia or bipolar disorder and their unaffected
relatives. Biological Psychiatry, 56:544-552, 2004.

[5] Paul M. Thompson, Agatha D. Lee, Rebecca A. Dutton, Jennifer A. Geaga, Kiralee
M. Hayashi, Mark A. Eckert, Ursula Bellugi, Albert M. Galaburda, Julie R.
Korenberg, Debra L. Mills, ArthurW. Toga, and Allan L. Reiss. Abnormal Cortical
Complexity and Thickness Profiles Mapped in Williams Syndrome. Neuroscience,
25(16):4146-4158, 2005.

[6] Stephen M. Smith. Fast Robust Automated Brain Extraction. Human Brain Mapping,
17:143-155, 2002.

[7] Horst K. Hahn and Heinz-Otto Peitgen. The Skull Stripping Problem in MRI
Solved by a Single 3D Watershed Transform. MICCAI, 134-143, 2000.

[8] David W. Shattuck, Stephanie R. Sandor-Leahy, Kirt A. Schaper, David A. Rottenberg,
and Richard M. Leahy. Magnetic Resonance Image Tissue Classification
Using a Partial Volume Model. NeuroImage, 13:856-876, 2001.

[9] F. S´egonne, E. Busa, M. Glessner, D. Salat,A.M. Dale, H.K. Hahn, and B. Fischl.
A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22:1060-
1075, 2004.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction To Algorithms, Second Edition. 2001.

[11] Yuri Y. Boykov and Marie-Pierre Jolly. Interactive Graph Cuts for Optimal Boundary
& Region Segmentation of Objects in N-D Images. Internation Conference on
Computer Vision,vol.I,p.105, 2001.

[12] Brian L. Price, Bryan Morse, Scott Cohen. Geodesic Graph Cut for Interactive
Image Segmentation. Conference on Computer Vision and Pattern Recognition,
2010.

[13] Yin Li, Jian Sun, Chi-Keung Tang, Heung-Yeung Shum. Lazzy Snapping. ACM,
2004.

[14] Carsten Rother, Vladimir Kolmogorov and Andrew Blake. ”GrabCut”-Interactive
Foreground Extraction using Iterated Graph Cuts. ACM Transactions on Graphics,
23:309-314, 2004.

[15] Jean Stawiaski, Etienne Decenci`ere and Franc??is Bidault. Interactive Liver Tumor
Segmentation Using. MICCAI, 2008.

[16] Yin Li, Jian Sun, Heung-Yeung Shum. Video Object Cut and Paste. ACM Transactions
on Graphics, 24:595-600, 2005.

[17] J. Reese and W. Barrett. Image Editing with Intelligent Paint. EUROGRAPHICS,
2002.

[18] Xue Bai, Jue Wang, David Simons, Guillermo Sapiro. Video SnapCut: Robust
Video Object Cutout Using Localized Classifiers. ACM SIGGRAPH, 2009.

[19] Herve Lombaert, Yiyong Sun, Leo Grady, Chenyang Xu. A Multilevel Banded
Graph Cuts Method for Fast Image Segmentation. ICCV, 259-265, 2005.

[20] Ali Kemal Sinop and Leo Grady. Accurate Banded Graph Cut Segmentation of
Thin Structures Using Laplacian Pyramids. 896-903MICCAI, 2006.

[21] Suresh A. Sadananthan,Weili Zheng, MichaelW.L. Chee, Vitali Zagorodnov. Skull
stripping using graph cuts. NeuroImage, 49:225-239, 2010.

[22] Yuri Boykov and Vladimir Kolmogorov. An Experimental Comparison of Min-
Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2004.

[23] David M. Mount and Sunil Arya. ANN: A Library for Approximate Nearest Neighbor
Searching, Internet: www.iceengg.edu/staff.html, Jan 27, 2010 [Sep. 17, 2010].

[24] Ostu N. Threshold selection method from gray-level histograms. IEEE Trans Syst
Man Cybern, 9:62-66, 1979.

[25] Jia-Xiu Liu, Yong-Sheng Chen, Li-Fen Chen. Accurate and robust extraction of
brain regions using a deformable model based on radial basis functions. Joural of
Neuroscience Methods, 183:155-166, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔