(3.215.180.226) 您好!臺灣時間:2021/03/06 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林俊碩
研究生(外文):Lin, Chun-Shuo
論文名稱:對微網誌進行時空階層架構的事件偵測機制
論文名稱(外文):Spatio-Temporal Hierarchical Event Detection in Microblogs
指導教授:彭文志彭文志引用關係
指導教授(外文):Peng, Wen-Chih
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:40
中文關鍵詞:微網誌事件偵測
外文關鍵詞:microblogevent detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在Web 2.0的時代,微網誌在網路中不斷的傳遞大量的資訊,其儼然已成為一種相當重要的資
訊傳播型式。藉由手持式裝置的協助,微網誌可以發布更具有時空敏銳度的訊息。由於微網誌
的訊息量相當的龐大,現有的微網誌搜索引擎,如TwitterSearch,已經不能滿足我們的需求
以總結出某個時間/空間上所發生的事件。在給定地點及時間後,這篇論文的目的是在微網誌
的資料中,偵測在該時間/地點所發生的事件(spatio-temporal event)。一個spatio-temporal
event必須滿足以下三個標準:一)空間上的集中度;二)時間上的集中度;三)普及度。為了
達成這個目標,我們提出了一個架構,包涵了4個階段:(1) profile construction (2) feature
extraction(3)event summary detection(4)ranking events。在本論文中,我們提出STF
(Spatio-Temporal Focus)去計算一個Feature的獨特性。此外,我們結合了STF與文件重
疊度,將一個事件從event seed開始做擴展。為了取出k個可能的 event summary,我們提出
了一個有效率的top-k soft clustering algorithm。在實驗的部份,我們使用來自於Twitter 的真實
資料去驗證我們所提出的架構。
In the age of Web 2.0, microblogs have become an important form of media, spreading
information in the web. With the help of mobile devices, microblogs can spread the
information with greater spatiotemporal sensitivity. With the overwhelming number of
microblog messages, existing microblog search engines, such as twitter search, could not
satisfy our need to summarize events within a location and time interval. This work aims at
detecting spatio-temporal events in microblogs with an pair \{location, time\} as the input. A
spatio-temporal event must satisfy the following 3 criteria: i) spatial focus; ii) temporal focus;
iii) popularity. To achieve this goal, we propose a framework with 4 phases: (1) profile
construction; (2) feature extraction; (3) event summary detection; (4) ranking events. In this
paper, we propose STF(Spatio-Temporal Focus) value to evaluate the distinctiveness of a
feature. Furthermore, we combine STF value with document overlap to expand an event
cluster from an event seed. To extract the top-k possible event summaries, an efficient top-k
soft clustering algorithm is proposed in this paper. In the experiments, we use a real data set
from Twitter to verify our proposed framework.
1 Introduction 1
2 Related Work 6
3 Preliminary 9
3.0.1 Definition and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.0.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 OLAP Spatio-Temporal Event Detection 15
4.0.3 Profile Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.0.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.0.5 Event Summary Detection . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.0.6 Ranking Event Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.0.7 Incremental Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Experiments 27
5.0.8 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.0.9 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Conclusion 37
[1] Twitterblog. http://blog.twitter.com/.
[2] Lars Backstrom, Jon Kleinberg, Ravi Kumar, and Jasmine Novak. Spatial variation in
search engine queries. In Proceedings of the 17th International Conference on World Wide
Web, 2008.
[3] Thorsten Brants, Francine Chen, and Ayman Farahat. A system for new event detection.
In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2003.
[4] Ling Chen and Abhishek Roy. Event detection from flickr data through wavelet-based
spatial analysis. In Proceedings of the 18th ACM Conference on Information and Knowl-
edge Management, 2009.
[5] Yih-Farn Chen, Giuseppe Di Fabbrizio, David Gibbon, Rittwik Jana, and Serban Jora.
Geotracker: geospatial and temporal rss navigation. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, 2007.
[6] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the top-k most
relevant spatial web objects. The Very Large Database, 2(1):337–348, 2009.
[7] Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Philip S. Yu, and Hongjun Lu. Parameter
free bursty events detection in text streams. In Proceedings of the 31st International
Conference on Very Large Data Bases, 2005.
[8] Qi He, Kuiyu Chang, and Ee-Peng Lim. Analyzing feature trajectories for event detection.
In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2007.
[9] Meishan Hu, Aixin Sun, and Ee-Peng Lim. Event detection with common user interests.
In Proceedings of the 10th ACM International Workshop on Web Information and Data
Management, 2008.
[10] Xin Jin, Scott Spangler, Rui Ma, and Jiawei Han. Topic initiator detection on the world
wide web. In Proceedings of the 19th International Conference on World Wide Web, 2010.
[11] Huajing Li, Zhisheng Li, Wang-Chien Lee, and Dik Lun Lee. A probabilistic topic-based
ranking framework for location-sensitive domain information retrieval. In Proceedings of
the 32nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2009.
[12] Yuanhua Lv and ChengXiang Zhai. Positional language models for information retrieval.
In Proceedings of the 32nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2009.
[13] Qiaozhu Mei, Deng Cai, Duo Zhang, and ChengXiang Zhai. Topic modeling with network
regularization. In Proceedings of the 17th International Conference on World Wide Web,
2008.
[14] Qiaozhu Mei, Chao Liu, Hang Su, and ChengXiang Zhai. A probabilistic approach to
spatiotemporal theme pattern mining on weblogs. In Proceedings of the 15th international
conference on World Wide Web, 2006.
[15] Qiaozhu Mei and ChengXiang Zhai. A mixture model for contextual text mining. In Pro-
ceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006.
[16] Satoshi Morinaga and Kenji Yamanishi. Tracking dynamics of topic trends using a finite
mixture model. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2004.
[17] Tye Rattenbury, Nathaniel Good, and Mor Naaman. Towards automatic extraction of
event and place semantics from flickr tags. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, 2007.
[18] Jagan Sankaranarayanan and Hanan Samet. Twitterstand: News in tweets. In Proceed-
ings of the 17th ACM SIGSPATIAL International Symposium on Advances in Geographic
Information Systems, 2009.
[19] Xing Yi, Hema Raghavan, and Chris Leggetter. Discovering user’s specific geo intention
in web search. In Proceedings of the 18th International Conference on World Wide Web,
2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 7.張麗文,2006,談公務行銷的重要,稅務旬刊, 1956期,16-19頁,1月。
2. 13.黃俊杰,2005,稅捐之憲法概念(上),稅務旬刊,1948期,36-39頁,11月。
3. 11.黃俊杰,2004,稅捐基本權之肯認,稅務旬刊,1905期,31-34頁,8月。
4. 22.盧世寧,2009,屏東國立海洋生物博物館進口白鯨稅捐爭議問題研究,月旦財經法雜誌,105-134頁,9月
5. 8.陳敏,1982,租稅課徵與經濟實質之掌握-經濟考察方法 政大法學評論第26期,12月。
6. 10.黃士洲,2005, 從契稅實例論實質課稅原則的適用範圍,月旦財經法雜誌第1期,155-172頁,6月。
7. 16.黃茂榮,2005,法律漏洞及其補充的方法(上),植根雜誌,第21卷第12期,493-532頁,12月。
8. 21.蔡朝安、游成淵, 2004, 實質課稅原則之內涵與界線,稅務旬刊,1897期,44-46頁,6月。
9. 19.黃茂榮,2006,法律漏洞及其補充的方法(下),植根雜誌,第22卷第2期,901-940頁,10月。
10. 15.黃茂榮,2002,實質課稅原則,植根雜誌,第18卷第8期,285-364頁,8月。
11. 5.范麗娟,1994,深度訪談簡介,戶外遊憩研究,7卷2期,25-35頁。
12. 14.黃俊杰,2005, 稅捐之憲法概念(下),稅務旬刊,1950期,34-38頁,11月。
13. 12.黃俊杰,2005,稅捐規劃之理論基礎,稅務旬刊,1940期,32-36頁,8月。
14. 20.黃耀賢,2010,稅徵新法難解實質課稅爭議,稅務旬刊,2102期,7-11頁,2月。
15. 4.洪東煒,2009,實質課稅原則適用在稅捐稽徵的問題與對策之研究,財稅研究,115-122頁,1月。
 
系統版面圖檔 系統版面圖檔