|
[1] G. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, pp. 114-117, 1965. [2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE Journal of Solid-State Circuits, vol. 9, pp. 256-268, 1974. [3] S. Chou, "Integration and innovation in the nanoelectronics era," ISSCC Tech Dig., vol. 1, pp. 36-41, 2005. [4] M. Bohr, "The new era of scaling in an SoC world," ISSCC Tech Dig., pp. 23-28, 2009. [5] H. Xiao, Introduction to semiconductor manufacturing technology: Prentice Hall, 2001. [6] K. Ushida, "Future lithography challenges," presented at the International Symposium on Semiconductor Manufacturing, 2006. [7] C. Rittenhouse, W. Mansfield, A. Kornblit, R. Cirelli, D. Tomes, and G. Celler, "Sub-0.1 mm NMOS transistors fabricated using laser-plasma point-source X-ray lithography," IEEE Electron Device Letters, vol. 16, pp. 322-324, 1995. [8] T. Rodgers and J. Meindl, "VMOS: high speed TTL compatible MOS logic," IEEE Journal of Solid-State Circuits, vol. 9, pp. 239-250, 1974. [9] L. Risch, W. H. Krautschneider, F. Hofmann, H. Schafer, T. Aeugle, and W. Rosner, "Vertical MOS transistors with 70 nm channel length," IEEE Transactions on Electron Devices, vol. 43, pp. 1495-1498, Sep 1996. [10] J. Hergenrother, D. Monroe, F. Klemens, A. Komblit, G. Weber, W. Mansfield, M. Baker, F. Baumann, K. Bolan, and J. Bower, "The vertical replacement-gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length," IEDM Tech. Dig, pp. 75-78, 1999. [11] T. Schulz, W. Rosner, L. Risch, T. Aeugle, U. Langmann, and A. Korbel, "130nm vertical PMOS transistors with P+ poly-gate," in ESSDERC, Bordeaux, France, 1998, pp. 168-171. [12] B. Roberds, E. Whang, A. Rudolph, and B. Doyle, "Investigation of a novel self-aligned dual gate MOSFET structure," in IEEE International SOI Conference, Stuart, FL, 1998, pp. 109-110. [13] D. A. Neamen, Semiconductor physics and devices: basic principles, 3rd Edition: McGraw-Hill Science Engineering, 2002. [14] Y. Taur and T. H. Ning, Fundamental of modern VLSI devices: Cambridge University Press, 1998. [15] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd Edition. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007. [16] W. Y. Choi, J. Y. Song, J. D. Lee, Y. J. Park, and B. G. Park, "100-nm n-/p-channel I-MOS using a novel self-aligned structure," IEEE Electron Device Letters, vol. 26, pp. 261-263, Apr 2005. [17] K. Gopalakrishnan, P. Griffin, and J. Plummer, "I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q," IEDM Tech. Dig., pp. 289-292, 2002. [18] P. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch, "Complementary tunneling transistor for low power application," Solid State Electronics, vol. 48, pp. 2281-2286, 2004. [19] N. Abele, R. Fritschi, K. Boucart, F. Casset, P. Ancey, and A. Ionescu, "Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor," IEDM Tech. Dig., pp. 479-481, 2005. [20] H. C. Lin, C. H. Kuo, G. J. Li, C. J. Su, and T. Y. Huang, "Operation of a novel device with suspended nanowire channels," IEEE Electron Device Letters, vol. 31, pp. 384-386, May 2010. [21] C. H. Kuo, H. C. Lin, G. J. Li, H. H. Hsu, C. J. Su, and T. Y. Huang, "A novel thin-film transistor with suspended nanowire channels and side-gated configuration," presented at the International Conference on Solid-State Devices and Materials, 2009. [22] G. J. Li, "Fabrication and characterization of a novel device with suspended nanowire channels," Master Thesis, Department of Electronics Engineering and Institute of Electronics, College of Electrical and Computer Engineering, National Chiao-Tung University, Hsinchu, 2009. [23] C. Shen, J. Lin, E. Toh, K. Chang, P. Bai, C. Heng, G. Samudra, and Y. Yeo, "On the performance limit of impact-ionization transistors," IEDM Tech. Dig, pp. 117-120, 2007. [24] A. Savio, S. Monfray, C. Charbuillet, and T. Skotnicki, "On the limitations of silicon for I-MOS integration," IEEE Transactions on Electron Devices, vol. 56, pp. 1110-1117, May 2009. [25] P. F. Wang, T. Nirschl, D. Schmitt-Landsiedel, and W. Hansch, "Simulation of the Esaki-tunneling FET," Solid-State Electronics, vol. 47, pp. 1187-1192, Jul 2003. [26] J. Knoch, "Optimizing tunnel FET performance - Impact of device structure, transistor dimensions and choice of material," presented at the VLSI TSA, Hsinchu, 2009. [27] K. K. Bhuwalka, J. Schulze, and I. Eisele, "Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering," IEEE Transactions on Electron Devices, vol. 52, pp. 909-917, May 2005. [28] Y. Khatami and K. Banerjee, "Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits," IEEE Transactions on Electron Devices, vol. 56, pp. 2752-2761, Nov 2009. [29] K. Akarvardar, C. Tsamados, D. Chauhan, Y. Wan, G. Ionescu, A. Howe, R. Wong, and H. SP, "Analytical modeling of the suspended-gate FET and design insights for low-power logic," IEEE Transactions on Electron Devices, vol. 55, pp. 48-59, 2008. [30] N. Abele, A. Villaret, A. Gangadharaiah, C. Gabioud, P. Ancey, and A. Ionescu, "1T MEMS memory based on suspended gate MOSFET," IEDM Tech. Dig., pp. 1-4, 2006. [31] A. Ionescu, V. Pott, R. Fritschi, K. Banerjee, M. Declercq, P. Renaud, C. Hibert, P. Fluckiger, and G. Racine, "Modeling and design of a low-voltage SOI suspended-gate MOSFET (SG-MOSFET) with a metal-over-gate architecture," in ISQED, 2002, pp. 496-501. [32] F. Bendriaa, F. Le-Bihan, A. C. Salaun, T. Mohammed-Brahim, C. Tlili, N. Jaffrezic, and H. Korri-Youssoufi, "DNA detection by suspended gate polysilicon thin film transisitor," in IEEE Sensors Conference, 2005, pp. 412-415. [33] I. Eisele and M. Zimmer, "Hybrid-gate suspended field-effect transistors for gas-sensing," in Device Research Conference, 2002, pp. 113-116. [34] H. Mahfoz-Kotb, A. Salaun, T. Mohammed-Brahim, and O. Bonnaud, "Air-gap polycrystalline silicon thin-film transistors for fully integrated sensors," IEEE Electron Device Letters, vol. 24, pp. 165-167, 2003. [35] D. K. Kim, Y. K. Kim, and H. Lee, "A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O2 based high density plasma for advanced DRAMs," Materials Science in Semiconductor Processing, vol. 10, pp. 41-48, Feb 2007. [36] L. Vallier, J. Foucher, X. Detter, E. Pargon, O. Joubert, G. Cunge, and T. Lill, "Chemical topography analyses of silicon gates etched in HBr/Cl2/O2 and HBr/Cl2/O2/CF4 high density plasmas," Journal of Vacuum Science & Technology B, vol. 21, pp. 904-911, Mar-Apr 2003. [37] I. Tepermeister, N. Blayo, F. P. Klemens, D. E. Ibbotson, R. A. Gottscho, J. T. C. Lee, and H. H. Sawin, "Comparison of advanced plasma sources for etching applications. I. Etching rate, uniformity, and profile control in a helicon and a multiple electron-cyclotron-resonance source," Journal of Vacuum Science & Technology B, vol. 12, pp. 2310-2321, Jul-Aug 1994. [38] F. H. Bell and O. Joubert, "Polysilicon gate etching in high density plasmas. V. Comparison between quantitative chemical analysis of photoresist and oxide masked polysilicon gates etched in HBr/Cl2/O2 plasmas," Journal of Vacuum Science & Technology B, vol. 15, pp. 88-97, Jan-Feb 1997. [39] J. Plummer, M. Deal, and P. Griffin, Silicon VLSI technology - fundamentals, practice and modeling: Prentice Hall, 2000. [40] D. Schroder, Semiconductor material and device characterization: Wiley-IEEE Press, 2006. [41] M. Collonge, M. Vinet, S. Deleonibus, and G. Ghibaudo, "Nano accumulation-mode suspended-Gate MOSFET: Impact of adhesion forces on electro-mechanical characteristics," in Ultimate Integration of Silicon, Udine, 2008, pp. 53 - 56. [42] D. Molinero, N. Abele, L. Castaner, and A. Ionescu, "Oxide charging and memory effects in suspended-gate FET," in Micro Electro Mechanical Systems, Tucson, AZ, 2008, pp. 685-688. [43] W. M. van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," Journal of Micromechanics and Microengineering, vol. 14, pp. 514-521, Apr 2004. [44] Z. Peng, X. B. Yuan, J. C. M. Hwang, D. I. Forehand, and C. L. Goldsmith, "Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms," IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 2911-2918, Dec 2007. [45] W. A. de Groot, J. R. Webster, D. Felnhofer, and E. P. Gusev, "Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices," IEEE Transactions on Device and Materials Reliability, vol. 9, pp. 190-202, Jun 2009. [46] A. Bansal and K. Roy, "Asymmetric halo CMOSFET to reduce static power dissipation with improved performance," IEEE Transactions on Electron Devices, vol. 52, pp. 397-405, Mar 2005. [47] K. Yamabe and K. Imai, "Nonplanar oxidation and reduction of oxide leakage currents at silicon corners by rounding-off oxidation," IEEE Transactions on Electron Devices, vol. 34, pp. 1681-1687, Aug 1987. [48] H. Umimoto, S. Odanaka, and I. Nakao, "Numerical simulation of stress-dependent oxide growth at convex and concave corners of trench structures," IEEE Electron Device Letters, vol. 10, pp. 330-332, Jul 1989.
|