(3.239.33.139) 您好!臺灣時間:2021/03/02 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家維
研究生(外文):Hsu, Chia-Wei
論文名稱:具懸浮奈米線結構之新穎元件的製作與特性分析
論文名稱(外文):A Study on the Fabrication and Characterization of Novel Devices with Suspended Nanowire Structures
指導教授:林鴻志林鴻志引用關係黃調元黃調元引用關係
指導教授(外文):Lin, Horng-ChihHuang, Tiao-Yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:88
中文關鍵詞:奈米線薄膜電晶體多晶矽
外文關鍵詞:nanowirethin film transistorpoly silicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們成功地製作兩種新穎的元件結構,分別為具懸浮奈米線通道之薄膜電晶體(suspended-NW-channel TFTs)、與垂直式金氧半場效電晶體(VMOS)。其中,前者的懸浮奈米線通道、與後者的邊襯(sidewall spacer)閘極電極皆利用一簡單、低成本的反應式離子蝕刻(RIE)技術製作完成。此外,在後者的製作過程中,我們只使用兩個主要的微影光罩,以達到進一步降低成本的目的。
具懸浮奈米線通道之薄膜電晶體展現了極低的次臨界擺幅(subthreshold slope) (35 mV/dec.)、與相當大的遲滯窗口(hysteresis window) (3.7 V)。我們發現擺入(pull-in)汲極電流限制效應、汲極電流的似暫態行為、非對稱低次臨界擺幅與遲滯窗口打開的特性。除此之外,我們還發現,隨著幾何結構尺寸與閘極電壓掃描速率的改變,遲滯窗口、擺入電壓(Vpi)、擺出電壓(Vpo)、擺入之低次臨界擺幅(S.S.F)與擺出之次臨界擺幅(S.S.R)都有特定的變化趨勢。最後,依據以上所有的發現,我們提出一個觀念性的模型,用以描述元件操作時靜電力、彈性回復力與表面黏滯力之間的交互作用。
另一方面,當操作在順向操作模式時,垂直式金氧半場效電晶體展現了良好的開關電流比(106)與可接受的抗貫穿能力(anti-punch through ability)。此外,我們也發現一個有趣的兩段式開啟特性,並且解釋為凸邊角效應的結果。
In this thesis, we have successfully developed and fabricated two kinds of novel device structures, including suspended-nanowire (NW)-channel thin film transistors (TFTs) and vertical metal-oxide-semiconductor field-effect transistors (VMOS). The suspended NW channels in suspended-NW-channel TFTs and the sidewall spacer gate electrode in VMOS are formed by a simple and low-cost reactive ion etch (RIE) technique. Especially, in VMOS, further cost down could be achieved as only two main photolithographic reticles are needed through the process.
The suspended-NW-channel TFTs with ultra-low subthreshold swing (S.S.) (35 mV/dec.) and considerable hysteresis window (3.7 V) are demonstrated. The limited pull-in drain current (ID), the transient-like behavior in ID, the asymmetric S.S., and the hysteresis window opening characteristics are also observed. Besides, the specific trends in hysteresis window, Vpi, Vpo, S.S.F and S.S.R with the change of geometric structure dimensions and VG sweeping rate are found and analyzed. Finally, based on all of the above observations, a conceptual model illustrating the interaction between the electrostatic force, the elastic recovery force and the surface adhesion forces during device operation is proposed.
On the other hand, the VMOS devices exhibit a good on-off ratio of 106 and acceptable anti-punch through ability. In addition, an interesting two-step turn-on characteristic is also observed and explained by the convex corner effect.

Abstract (Chinese) i
Abstract (English) iii
Acknowledgment (Chinese) v
Contents vi
List of Figure Captions viii
List of Table Captions xiv

Chapter 1 Introduction 1
1-1 Overview of Vertical MOSFETs 1
1-2 Overview of Low Subthreshold-Swing Devices 3
1-2-1 Impact-ionization MOS (I-MOS) 4
1-2-2 Tunneling FET (T-FET) 6
1-2-3 Suspended-gate MOSFET (SG-MOSFET) 7
1-2-4 Suspended-NW-channel Device 9
1-3 Motivation 10
1-4 Organization of this Thesis 11

Chapter 2 Device Fabrication 12
2-1 Device Structure and Process Flow of Suspended-NW-Channel TFTs 12
2-2 Device Structure and Process Flow of Vertical MOSFETs 13
2-3 Measurement Setup and Electrical Characterization 16
Table Captions 18

Chapter 3 Electrical Characteristics of Suspended-NW-channel TFTs 19
3-1 Basic Electrical Characteristics 19
3-2 Hysteresis Phenomenon 20
3-2-1 Basic Hysteresis Characteristics 21
3-2-2 Effects of Structure Dimension 24
3-2-3 Effects of VG Sweeping Rate 27
3-2-4 Summary 28
3-3 Operation Mechanism 28
Table Captions 31

Chapter 4 Electrical Characteristics of Vertical MOSFETs 32
4-1 Background 32
4-2 Basic Electrical Characteristics 33
4-3 Discussion 35
Table Captions 37

Chapter 5 Conclusion and Future Work 38
5-1 Conclusion 38
5-2 Future Work 40

References 42
Figure Captions 46
Vita 87
Publication List 88
[1] G. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, pp. 114-117, 1965.
[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE Journal of Solid-State Circuits, vol. 9, pp. 256-268, 1974.
[3] S. Chou, "Integration and innovation in the nanoelectronics era," ISSCC Tech Dig., vol. 1, pp. 36-41, 2005.
[4] M. Bohr, "The new era of scaling in an SoC world," ISSCC Tech Dig., pp. 23-28, 2009.
[5] H. Xiao, Introduction to semiconductor manufacturing technology: Prentice Hall, 2001.
[6] K. Ushida, "Future lithography challenges," presented at the International Symposium on Semiconductor Manufacturing, 2006.
[7] C. Rittenhouse, W. Mansfield, A. Kornblit, R. Cirelli, D. Tomes, and G. Celler, "Sub-0.1 mm NMOS transistors fabricated using laser-plasma point-source X-ray lithography," IEEE Electron Device Letters, vol. 16, pp. 322-324, 1995.
[8] T. Rodgers and J. Meindl, "VMOS: high speed TTL compatible MOS logic," IEEE Journal of Solid-State Circuits, vol. 9, pp. 239-250, 1974.
[9] L. Risch, W. H. Krautschneider, F. Hofmann, H. Schafer, T. Aeugle, and W. Rosner, "Vertical MOS transistors with 70 nm channel length," IEEE Transactions on Electron Devices, vol. 43, pp. 1495-1498, Sep 1996.
[10] J. Hergenrother, D. Monroe, F. Klemens, A. Komblit, G. Weber, W. Mansfield, M. Baker, F. Baumann, K. Bolan, and J. Bower, "The vertical replacement-gate (VRG) MOSFET: a 50-nm vertical MOSFET with lithography-independent gate length," IEDM Tech. Dig, pp. 75-78, 1999.
[11] T. Schulz, W. Rosner, L. Risch, T. Aeugle, U. Langmann, and A. Korbel, "130nm vertical PMOS transistors with P+ poly-gate," in ESSDERC, Bordeaux, France, 1998, pp. 168-171.
[12] B. Roberds, E. Whang, A. Rudolph, and B. Doyle, "Investigation of a novel self-aligned dual gate MOSFET structure," in IEEE International SOI Conference, Stuart, FL, 1998, pp. 109-110.
[13] D. A. Neamen, Semiconductor physics and devices: basic principles, 3rd Edition: McGraw-Hill Science Engineering, 2002.
[14] Y. Taur and T. H. Ning, Fundamental of modern VLSI devices: Cambridge University Press, 1998.
[15] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd Edition. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.
[16] W. Y. Choi, J. Y. Song, J. D. Lee, Y. J. Park, and B. G. Park, "100-nm n-/p-channel I-MOS using a novel self-aligned structure," IEEE Electron Device Letters, vol. 26, pp. 261-263, Apr 2005.
[17] K. Gopalakrishnan, P. Griffin, and J. Plummer, "I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q," IEDM Tech. Dig., pp. 289-292, 2002.
[18] P. Wang, K. Hilsenbeck, T. Nirschl, M. Oswald, C. Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch, "Complementary tunneling transistor for low power application," Solid State Electronics, vol. 48, pp. 2281-2286, 2004.
[19] N. Abele, R. Fritschi, K. Boucart, F. Casset, P. Ancey, and A. Ionescu, "Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor," IEDM Tech. Dig., pp. 479-481, 2005.
[20] H. C. Lin, C. H. Kuo, G. J. Li, C. J. Su, and T. Y. Huang, "Operation of a novel device with suspended nanowire channels," IEEE Electron Device Letters, vol. 31, pp. 384-386, May 2010.
[21] C. H. Kuo, H. C. Lin, G. J. Li, H. H. Hsu, C. J. Su, and T. Y. Huang, "A novel thin-film transistor with suspended nanowire channels and side-gated configuration," presented at the International Conference on Solid-State Devices and Materials, 2009.
[22] G. J. Li, "Fabrication and characterization of a novel device with suspended nanowire channels," Master Thesis, Department of Electronics Engineering and Institute of Electronics, College of Electrical and Computer Engineering, National Chiao-Tung University, Hsinchu, 2009.
[23] C. Shen, J. Lin, E. Toh, K. Chang, P. Bai, C. Heng, G. Samudra, and Y. Yeo, "On the performance limit of impact-ionization transistors," IEDM Tech. Dig, pp. 117-120, 2007.
[24] A. Savio, S. Monfray, C. Charbuillet, and T. Skotnicki, "On the limitations of silicon for I-MOS integration," IEEE Transactions on Electron Devices, vol. 56, pp. 1110-1117, May 2009.
[25] P. F. Wang, T. Nirschl, D. Schmitt-Landsiedel, and W. Hansch, "Simulation of the Esaki-tunneling FET," Solid-State Electronics, vol. 47, pp. 1187-1192, Jul 2003.
[26] J. Knoch, "Optimizing tunnel FET performance - Impact of device structure, transistor dimensions and choice of material," presented at the VLSI TSA, Hsinchu, 2009.
[27] K. K. Bhuwalka, J. Schulze, and I. Eisele, "Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering," IEEE Transactions on Electron Devices, vol. 52, pp. 909-917, May 2005.
[28] Y. Khatami and K. Banerjee, "Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits," IEEE Transactions on Electron Devices, vol. 56, pp. 2752-2761, Nov 2009.
[29] K. Akarvardar, C. Tsamados, D. Chauhan, Y. Wan, G. Ionescu, A. Howe, R. Wong, and H. SP, "Analytical modeling of the suspended-gate FET and design insights for low-power logic," IEEE Transactions on Electron Devices, vol. 55, pp. 48-59, 2008.
[30] N. Abele, A. Villaret, A. Gangadharaiah, C. Gabioud, P. Ancey, and A. Ionescu, "1T MEMS memory based on suspended gate MOSFET," IEDM Tech. Dig., pp. 1-4, 2006.
[31] A. Ionescu, V. Pott, R. Fritschi, K. Banerjee, M. Declercq, P. Renaud, C. Hibert, P. Fluckiger, and G. Racine, "Modeling and design of a low-voltage SOI suspended-gate MOSFET (SG-MOSFET) with a metal-over-gate architecture," in ISQED, 2002, pp. 496-501.
[32] F. Bendriaa, F. Le-Bihan, A. C. Salaun, T. Mohammed-Brahim, C. Tlili, N. Jaffrezic, and H. Korri-Youssoufi, "DNA detection by suspended gate polysilicon thin film transisitor," in IEEE Sensors Conference, 2005, pp. 412-415.
[33] I. Eisele and M. Zimmer, "Hybrid-gate suspended field-effect transistors for gas-sensing," in Device Research Conference, 2002, pp. 113-116.
[34] H. Mahfoz-Kotb, A. Salaun, T. Mohammed-Brahim, and O. Bonnaud, "Air-gap polycrystalline silicon thin-film transistors for fully integrated sensors," IEEE Electron Device Letters, vol. 24, pp. 165-167, 2003.
[35] D. K. Kim, Y. K. Kim, and H. Lee, "A study of the role of HBr and oxygen on the etch selectivity and the post-etch profile in a polysilicon/oxide etch using HBr/O2 based high density plasma for advanced DRAMs," Materials Science in Semiconductor Processing, vol. 10, pp. 41-48, Feb 2007.
[36] L. Vallier, J. Foucher, X. Detter, E. Pargon, O. Joubert, G. Cunge, and T. Lill, "Chemical topography analyses of silicon gates etched in HBr/Cl2/O2 and HBr/Cl2/O2/CF4 high density plasmas," Journal of Vacuum Science & Technology B, vol. 21, pp. 904-911, Mar-Apr 2003.
[37] I. Tepermeister, N. Blayo, F. P. Klemens, D. E. Ibbotson, R. A. Gottscho, J. T. C. Lee, and H. H. Sawin, "Comparison of advanced plasma sources for etching applications. I. Etching rate, uniformity, and profile control in a helicon and a multiple electron-cyclotron-resonance source," Journal of Vacuum Science & Technology B, vol. 12, pp. 2310-2321, Jul-Aug 1994.
[38] F. H. Bell and O. Joubert, "Polysilicon gate etching in high density plasmas. V. Comparison between quantitative chemical analysis of photoresist and oxide masked polysilicon gates etched in HBr/Cl2/O2 plasmas," Journal of Vacuum Science & Technology B, vol. 15, pp. 88-97, Jan-Feb 1997.
[39] J. Plummer, M. Deal, and P. Griffin, Silicon VLSI technology - fundamentals, practice and modeling: Prentice Hall, 2000.
[40] D. Schroder, Semiconductor material and device characterization: Wiley-IEEE Press, 2006.
[41] M. Collonge, M. Vinet, S. Deleonibus, and G. Ghibaudo, "Nano accumulation-mode suspended-Gate MOSFET: Impact of adhesion forces on electro-mechanical characteristics," in Ultimate Integration of Silicon, Udine, 2008, pp. 53 - 56.
[42] D. Molinero, N. Abele, L. Castaner, and A. Ionescu, "Oxide charging and memory effects in suspended-gate FET," in Micro Electro Mechanical Systems, Tucson, AZ, 2008, pp. 685-688.
[43] W. M. van Spengen, R. Puers, R. Mertens, and I. De Wolf, "A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches," Journal of Micromechanics and Microengineering, vol. 14, pp. 514-521, Apr 2004.
[44] Z. Peng, X. B. Yuan, J. C. M. Hwang, D. I. Forehand, and C. L. Goldsmith, "Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms," IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 2911-2918, Dec 2007.
[45] W. A. de Groot, J. R. Webster, D. Felnhofer, and E. P. Gusev, "Review of device and reliability physics of dielectrics in electrostatically driven MEMS devices," IEEE Transactions on Device and Materials Reliability, vol. 9, pp. 190-202, Jun 2009.
[46] A. Bansal and K. Roy, "Asymmetric halo CMOSFET to reduce static power dissipation with improved performance," IEEE Transactions on Electron Devices, vol. 52, pp. 397-405, Mar 2005.
[47] K. Yamabe and K. Imai, "Nonplanar oxidation and reduction of oxide leakage currents at silicon corners by rounding-off oxidation," IEEE Transactions on Electron Devices, vol. 34, pp. 1681-1687, Aug 1987.
[48] H. Umimoto, S. Odanaka, and I. Nakao, "Numerical simulation of stress-dependent oxide growth at convex and concave corners of trench structures," IEEE Electron Device Letters, vol. 10, pp. 330-332, Jul 1989.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 沈亞梵(2000)。後現代媒體資源整合與發展。教學科技與媒體,50(4),20-23。
2. 吳靜吉(2009)。為台灣種下創造力教育的種子:可行計畫的個案。國際藝術教育學刊,7(1),167-178。
3. 黃興進、洪銘建,2003。從交易成本理論觀點探討台灣製藥廠導入B2B電子商務之關鍵考量因素:個案研究,中華管理評論學報2003(8月)。
4. 李堅萍(2009)。創作性技術生手與熟手之創意表現和自我效能的差異性與相關性。藝術學報,84,1-23。
5. 王鼎銘(2000)。資訊時代數位影像對美感價值的衝擊與影響。教學科技與媒體,51(6), 2-8。
6. 林伯賢(2007)。電腦科技對藝術課程教學策略的影響。國際藝術教育學刊,5(2),146-153。
7. 林珮淳、范銀霞(2004)。從數位藝術探討互動觀念、媒介與美學。藝術學報,74,99-111。
8. 徐庭蘭、郭靜緻(2007)。創造性藝術教學活動對幼兒園大班幼兒創造力表現影響。藝術學報,80,65-84。
9. 高千惠(2004)。數位藝術裡的「後人類」傳奇。藝術家,349(6),338-345。
10. 張家琳(2009)。當藝術教育有了不一樣的解釋探究當代視覺藝術教育的多元議題。美育,170,82-87。
11. 郭秋勳、郭美辰(2005)。中小學教師如何強化創造力提升競爭力。教育研究月刊,133(5),11-18。
12. 郭實渝(2000)。現代科技在教學上之應用與生態教育理念之推動產生的兩難。歐美研究,30(2),111-144。
13. 曾鈺涓(2009)。缺席的一段歷史—從「藝術與科技」到「數位藝術」。美育,169,12-21。
14. 葉忠達(2000)。科技與藝術的關係及其對影像傳播的影響與省思。教學科技與媒體,51(6),14-18。
15. 【32】 陳賢義,“視覺技術在線上檢測之應用”,自動化感測技術專輯,機械工業雜誌6月號,267-279,(1993).
 
系統版面圖檔 系統版面圖檔