(54.236.58.220) 您好!臺灣時間:2021/03/06 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佑達
研究生(外文):Lin, Yu-Ta
論文名稱:應用於低溫多晶矽製程下電容式感測器讀出電路設計與實現
論文名稱(外文):Design and Realization of Capacitive Sensor Readout Circuit in LTPS Technology
指導教授:柯明道柯明道引用關係
指導教授(外文):Ker, Ming-Dou
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:59
中文關鍵詞:電容式感測器面板低溫多晶矽讀出電路
外文關鍵詞:capacitive sensorpanelLTPSreadout circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:430
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低溫多晶矽 (low temperature polycrystalline silicon, LTPS) 薄膜電晶體 (thin-film transistors, TFTs) 已被視為一種材料廣泛地研究於可攜帶式系統產品中,例如數位相機、行動電話、個人數位助理 (PDA) 、筆記型電腦等,這是由於低溫多晶矽薄膜電晶體的電子遷移率約是傳統非晶矽 (amorphous silicon) 薄膜電晶體的一百倍大。此外,低溫多晶矽技術可藉由將驅動電路整合於顯示器之周邊區域來達到輕薄、巧小且高解析度的顯示器。這樣的技術也將越來越適合於系統面板 (System-on-Panel, SOP) 應用之實現。
隨著系統面板的發展,各式輸入顯示技術 (input display technology) 被整合於其中,包含了記錄文字、影像或是照片的掃描器 (scanner),偵測手指或是筆跡的觸控式面板 (touch panel) 等,這些新穎的應用不管對於個人或是企業都可以帶來很大的便利性。近幾年來,由於上述的優點,整合觸控面板於玻璃基板上已經被廣泛的研究以及討論。應用於消費者產品的觸控面板可大致分為兩類:電阻式觸控面板以及電容式觸控面板。雖然電阻式觸控面板較易達到低成本以及低錯誤率,然而卻有低透明度以及只支援單點觸控的缺點。反之,電容式觸控面板的操作特性可支援多點觸控,讓使用者能更直覺地操作產品。
現今大多數的低溫多晶矽薄膜電晶體是經由準分子雷射結晶 (excimer laser crystallized poly-Si)所製造,多晶矽方向和晶粒大小的隨機性以及不同方向晶粒接觸面的不完整性都會造成薄膜電晶體的臨界電壓(threshold voltage)變異進而影響到面板上類比電路的準確性。
本篇論文提出一種適用於低溫多晶矽製程並實現於玻璃基板上的電容式觸控面板讀出電路。運用開關電容(switch-capacitor)的技巧,臨界電壓變異的現象可以成功地被補償。此外,透過整合適用於低溫多晶矽製程並可製作於玻璃基板上的類比數位轉換器(ADC),此電路不僅能辨認面板被觸碰與否,也可進而辨別出感測電容的大小。透過內插法計算的方式,觸控面板整體可觸碰的解析度可以被提昇。

Low temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) have been widely investigated as a material for portable systems, such as digital camera, mobile phone, personal digital assistants (PDAs), notebook, and so on, because the electron mobility of LTPS TFTs is about 100 times faster than that of the conventional amorphous silicon TFTs. Furthermore, LTPS technology can achieve slim, compact, and high-resolution display by integrating the driving circuits on peripheral area of the display. This technology will also become more suitable for realization of System-on-Panel (SOP) applications.
With SOP technique, circuits for various functions can be integrated on glass substrate to become value-added displays. Also, the input display technology creates opportunities for new applications such as a scanner for recording of text or images for on-line shops and touch-sensing circuits for detecting the position of finger or pen. Recently, integrating touch panel into glass substrate has attracted much attentions because of the aforesaid advantages. Touch panels used in mobile applications are mainly resistive or capacitive. Although resistive touch panel can achieve low cost with rarely malfunction, it has some drawbacks including serious glare, low transmittance, and single touch only. On the other hand, capacitive touch panel can realize multi-touch functionality easily which allows user to operate information instruments more intuitively.
Because most LTPS TFTs are based on excimer laser crystallized poly-Si, random orientation of poly-Si grains, grain size variation, and incomplete termination of grain boundaries would lead to a quite large threshold voltage variation of TFT device which contributes to serious impact on the accuracy of analog circuits. In this work, a new readout circuit for capacitive sensor on glass in LTPS fabrication process has been proposed. The switch capacitance (SC) technique is used to compensate the threshold voltage variation effect. Different values of the sensed capacitance can be judged by ADC. In this way, the overall resolution for touch panel can be enhanced by interpolation method.

ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) iii
ACKNOWLEDGEMENTS v
CONTENTS vii
FIGURE CAPTIONS ix
Chapter 1 1
Introduction 1
1.1 Motivation 1
1.1.1 LCD Industry and LTPS Technology [1], [2] 1
1.1.2 The Advantages of the System-on-Panel LTPS TFT-LCD Displays [4], [5] 2
1.1.3 Future Applications of “Input Display” [7] 7
1.1.4 Summary 8
1.2 Background Knowledge of Thin-Film Transistors LCD 9
1.2.1 Brief Introduction of Liquid Crystal Displays [8], [9] 9
1.2.2 Liquid Crystal Display Module Structure 11
1.3 Thesis Organization 12
Chapter 2 13
Overview of Touch Panel Technology 13
2.1 Resistive Touch Panels 13
2.1.1 4-wire Resistive Touch Panels [11], [12] 13
2.1.2 5-wire Resistive Touch Panels [13] 15
2.2 Capacitive Touch Panels 16
2.2.1 Surface Capacitive Touch Panels [14] 16
2.2.2 Projected Capacitive Touch Panels [15] 17
2.3 Other Touch Panels 20
2.3.1 Surface Acoustic Wave (SAW) Touch Panels [16] 20
2.3.2 Infrared (IR) Touch Panels [17] 20
Chapter 3 22
On-Panel Readout Circuit for Capacitive Touch Panel 22
3.1 Introduction 22
3.2 Circuits Implementation and Simulated Results 23
3.2.1 Equivalent Model of Capacitive Sensor Line 23
3.2.2 Design of On-Panel Readout Circuit and Simulated Results 25
3.2.3 Switch Design 32
3.3 Summary 39
Chapter 4 40
Measured Results of On-Panel Readout Circuit for Capacitive Touch Panel 40
4.1 Measurement Setup 40
4.2 Measured Results 43
Chapter 5 50
Conclusions and Future Works 50
5.1 Conclusions 50
5.2 Future Works 50
APPENDIX 52
REFERENCES 54
VITA 58
PUBLICATION LIST 59
[1] S. Uchikoga, “Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays,” in MRS Bulletin, pp. 881−886, Nov. 2002.
[2] K. Yoneda, R. Yokoyama, and T. Yamada, “Future application potential of low temperature p-Si TFT-LCD displays,” SID, Dig. Tech. Papers, 2001, pp. 1242−1245.
[3] Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology using a multi-bit pixel memory circuit,” SID, Dig. Tech. Papers, 2006, pp. 1185−1188.
[4] Y. Nakajima, Y. Kida, M. Murase, Y. Toyoshima, and Y. Maki, “Latest development of “System-on-Glass” display with low temperature poly-Si TFT,” SID, Dig. Tech. Papers, 2004, pp. 864−867.
[5] T. Matsuo and T. Muramatsu, “CG silicon technology and development of system on panel,” SID, Dig. Tech. Papers, 2004, pp. 856–859.
[6] B. Lee, Y. Hirayama. Y. Kubota, S. Imai, A. Imaya, M. Katayama, K. Kato, A. Ishikawa, T. Ikeda, Y. Kurokawa, T. Ozaki, K. Mutaguch, and S. Yamazaki, “A CPU on a glass substrate using CG-silicon TFTs,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2003, pp. 164-165, Feb., 2003.
[7] T. Nishibe and H. Nakamura, “Value-added circuit and function integration for SOG (System-on-Glass) based on LTPS technology,” SID, Dig. Tech. Papers, 2006, pp. 1091−1094.
[8] E. Lueder, Liquid Crystal Displays Addressing Schemes and Electro-Optical Effects, John Wiley and Sons, Inc., Sep. 2004.
[9] T. Tsukada, TFT/LCD Liquid-Crystal Displays Addressed by Thin-Film Transistors, Gordon and Breach Publishers, 1996.
[10] 戴亞翔, TFT-LCD 面板的驅動電路與設計. 台北: 五南出版社, 2006.
[11] 電阻式觸控面板介紹, Available: http://www.51touch.com/Files/DownLoad/Other/TouchScreen.pdf. [Accessed: Jul. 26, 2010].
[12] N. Brenner and S. Sullivan, “4-wire and 8-wire resistive touch-screen controller using the MSP430,” Feb. 2008. [Online] Available: http://www.eetindia.co.in/STATIC/PDF/200811/EEIOL_2008NOV17_OPTO_AN_01.pdf?SOURCES=DOWNLOAD [Accessed: Jul. 28, 2010].
[13] “5-Wire Resistive Touchscreens,” touchscreens.com. Available: http://www.touchscreens.com/intro-touchtypes-resistive.html. [Accessed: Aug. 9, 2010].
[14] M. Pertijs, K. Makinwa, and J. Huijsing, “A CMOS smart temperature sensor with a 3? inaccuracy of ± 0.1 oC from -55 oC to 125 oC,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
[15] Cypress Semiconductor Corporation Technique Staff, TrueTouchTM Multitouch Gesture Data Sheet, Cypress Semiconductor Corporation, 2009.
[16] M. C. Brenner and J. J. Fitzgibbon, “Surface acoustic wave touch panel system,” U.S. Patent 4,644,100, Feb. 17, 1987.
[17] R. W. Doering, “Infrared touch panel,” U.S. Patent 4,868,912, Sep. 19, 1989.
[18] T. Nishibe and H. Nakamura, “Value-added integration of functions for silicon-on-glass (SOG) based on LTPS technologies,” J. Soc. Inf. Display, vol. 15, no. 2, pp. 151-156, Feb. 2007.
[19] C.-C. Tsai, M.-D. Ker, Y.-H. Li, C.-H. Kuo, C.-H. Li, Y.-J. Hsieh, and C.-T. Liu, “Design and realization of delta-sigma analog-to-digital converter in LTPS technology,” SID Dig. Tech., 2009, pp. 1283–1286.
[20] C.-H. Li, M.-J. Jou, and Y.-J. Hsieh, “Multi-touch panel: trend and applications,” Proc. IDW, 2009, pp. 2127-2130.
[21] E. Kanda, T. Eguchi, Y. Hiyoshi, T. Chino, Y. Tsuchiya, T. Iwashita, T. Ozawa, T. Miyazawa, and T. Matsumoto, “Integrated active matrix capacitive sensors for touch panel LTPS-TFT LCDs,” SID Dig. Tech., 2008, pp. 834–837.
[22] T.-M. Wang, M.-D. Ker, Y.-H. Li, C.-H. Kuo, C.-H. Li, Y.-J. Hsieh, and C.-T. Liu, “Design of on-panel readout circuit for touch panel application,” SID Dig. Tech., 2010, pp. 1933-1936.
[23] M.-D. Ker, C.-K. Deng, and J.-L. Huang, “On-panel output buffer with offset compensation technique for data driver in LTPS technology,” IEEE J. Display Tech., vol. 2, no. 2, pp. 153–159, Jun. 2006.
[24] J.-S. Chen and M.-D. Ker, “New gate-bias voltage-generating technique with threshold-voltage compensation for on-glass analog circuits in LTPS process,” IEEE J. Display Tech., vol. 3, no. 3, pp. 309–314, Sep. 2007.
[25] Y.-T. Lin, Y.-C. Lin, T.-M. Wang, and M.-D. Ker, “On-panel readout circuit for capacitive sensor with LTPS technology,” in Proc. of Conf. Active Matrix Flatpanel Displays and Devices, Jul., 2010, pp. 121-124.
[26] Y.-S. Tiao, M.-L. Sheu, S.-M. Wu, and H.-M. Yang, “A CMOS readout circuit for LTPS-TFT capacitive fingerprint sensor,” in Proc. of Conf. IEEE Electron Devices and Solid-State Circuits, Dec. 2005, pp. 631-634.
[27] Y.-H. Tai, C.-C. Pai, B.-T. Chen, and H.-C. Cheng, “A source-follower type analog buffer using Poly-Si TFTs with large design windows,” IEEE Electron Device Lett., vol. 26, no. 11, pp. 811-813, Nov., 2005.
[28] S.-H. Jung, W.-J. Nam, and M.-K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in Poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690-692, Oct, 2004.
[29] T. Nakamura, H. Hayashi, M. Yoshida, N. Tada, M. Ishikawa, T. Motai, and T. Nishibe, “A touch panel function integrated LCD including LTPS A/D converter,” SID Dig. Tech., 2005, pp. 1054–1055.
[30] T. Kumamoto, M. Nakaya, H. Honda, S. Asai, Y. Akasaka, and Y. Horiba, “An 8-bit high-speed A/D converter,” IEEE J. Solid-State Circuit, vol. 21, pp. 976-982, Dec. 1986.
[31] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 莊瑞珠、陳穆貞,2007,金融機構住宅房屋貸款信用評分系統之建構研究,住宅學報15((2),民國九十五年十二月 學術論著,p.65-90。
2. 18.楊雲龍(1997),蘭陽平原水災災害識覺之研究,「新竹師院學報」,第10卷,第287-323頁。
3. 18.楊雲龍(1997),蘭陽平原水災災害識覺之研究,「新竹師院學報」,第10卷,第287-323頁。
4. 鍾經樊、黃嘉龍、黃博怡、謝有隆,2006,台灣地區企業信用評分系統的建置、驗證和比較中央研究院經濟研究所經濟論文,34(4),2006,p.541-590。
5. 1.丁育群、蔡綽芳(2000),921震災對都市空間防災規劃問題探討,「工程月刊」,第72期,第25-48頁。
6. 鍾經樊、黃嘉龍、黃博怡、謝有隆,2006,台灣地區企業信用評分系統的建置、驗證和比較中央研究院經濟研究所經濟論文,34(4),2006,p.541-590。
7. 洪允平,1988 ,「消費性貸款」,中小企銀季刊,30,p.46-47。
8. 莊瑞珠、陳穆貞,2007,金融機構住宅房屋貸款信用評分系統之建構研究,住宅學報15((2),民國九十五年十二月 學術論著,p.65-90。
9. 梁德馨、黃高鴻,2007,小額信用貸款違約風險評分評等模型之建構─依循新巴賽爾資本協定零售型暴險內部評等法之規範,風險管理學報9(2),2007/7,p. 1-25。
10. 1.丁育群、蔡綽芳(2000),921震災對都市空間防災規劃問題探討,「工程月刊」,第72期,第25-48頁。
11. 洪允平,1988 ,「消費性貸款」,中小企銀季刊,30,p.46-47。
12. 林宜村,2008,看美國次級房貸事件之影響-談台灣房市與房貸,今日合庫,第34卷,第一期,p63-81。
13. 梁德馨、黃高鴻,2007,小額信用貸款違約風險評分評等模型之建構─依循新巴賽爾資本協定零售型暴險內部評等法之規範,風險管理學報9(2),2007/7,p. 1-25。
14. 林宜村,2008,看美國次級房貸事件之影響-談台灣房市與房貸,今日合庫,第34卷,第一期,p63-81。
15. 26.簡賢文(2000),都市空間大量人群避難行為基礎研究,「中央警察大學災害防救學報」,第1期,第57-72頁。
 
系統版面圖檔 系統版面圖檔