|
[1] G. E. Moore, Electronics, 38, 114, 1965. [2] Takashi Hori,“Gate Dielectrics and MOS ULSIs,”Springer, New York, 1997. [3] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” Proceedings of the IEEE, 87, pp.668-678, 1999. [4] G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 Micrometer MOSFET Design,” IEEE Trans. Electron Devices, 31, pp.452-462, 1984. [5] P. A. Packan, “Perspectives: Device physics - Pushing the limits,” Science, 285, pp.2079-2081, 1999. [6] M. Schulz, “Interface states at the SiO2-Si interface,” Surface Science, 132, pp.422-455, 1983. [7] M. Nandakumar, A. Chatterjee, S. Sridhar, K. Joyner, M. Rodder, I. C. Chen, “Shallow trench isolation for advanced ULSI CMOS technologies,” IEDM Tech. Digest, 133-136, 1998. [8] S. Wolf, “Silicon Processing for the VLSI Era, Vol. 2: Process Integration,” Lattice Press, 1990. [9] H. Iwai, “CMOS technology - Year 2010 and beyond,” IEEE journal of solid-state circuits, 34, pp.357-366, 1999. [10] R. Rios, N. D. Arora, “Determination of ultra-thin gate oxide thicknesses for CMOS structures using quantum effects,” IEDM Tech. Digest, 613-616, 1994. [11] M. Schulz, “The end of the road for silicon,” Nature, 399, pp.729-730, 1999. [12] X. Y. Liu, J. F. Kang, R. Q. Han, “Direct tunneling current model for MOS devices with ultra-thin gate oxide including quantization effect and polysilicon depletion,” Solid State Communications, 125, pp.219-223, 2003. [13] S. H. Lo, D. A. Buchanan, Y. Tuar, W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET,” IEEE Electron Devices Lett., 18, pp.209-211, 1997. [14] R. M. Wallace, G. D. Wilk, ”High-kappa dielectric materials for microelectronics,” Critical Reviews in Solid State and Materials Sciences, 28, pp.231-285, 2003. [15] R. M. Wallace, G. D. Wilk, ”High-k Gate Dielectric Materials,” MRS Bulletin, Special Issue, 192-197, 2002. [16] Howard Huff, David Gilmer, “High Dielectric Constant Materials: VLSI MOSFET Applications,” Springer, London, 2004. [17] K. S. Krisch, M. L. Green, F. H. Baumann, D. Brasen, L. C. Feldman, L. Manchanda, “Thickness dependence of boron penetration through O2 and N2O-grown gate oxides and its impact on threshold voltage variation,” IEEE Trans. on Electron Devices, 43 , pp.982-990, 1996. [18] Z. J. Ma, J. C. Chen, Z. H. Liu, J. T. Krick, Y. C. Cheng, C. Hu, P. K. Ko, “Suppression of boron penetration in p+ polysilicon gate P-MOSFET's using low-temperature gate-oxide N2O anneal,” IEEE Electron Devices Lett., 15, pp.109-111, 1994. [19] C. Leveugle, P. K. Hurley, A. Mathewson, S. Moran, E. Sheehan, A. Kalnitsky, A. Lepert, I. Beinglass, M.Venkatesan, “Impact of the polysilicon doping level on the properties of the silicon/oxide interface in polysilicon/oxide/silicon capacitor structures,” Microelectronic Engineering, 36, pp.215-218, 1997. [20] W. J. Cho, J. E. Hong, W. H. Jin, K. S. Lee, S. K. Rha, H. S. Kim, “Improvement of sheet resistance and gate oxide integrity using phosphorus ion implantation in tungsten polycide gate,” Solid-State Electronics, 44, pp.393-399, 2000. [21] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, “High-kappa/metal-gate stack and its MOSFET characteristics,” IEEE Electron Devices Lett., 25, pp.408-410, 2004. [22] M. Casse, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, F. Boulanger, “Carrier transport in HfO2/metal gate MOSFETs: Physical insight into critical parameters,” IEEE Trans. on Electron Devices 53, pp.759-768, 2006. [23] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243-5275, 2001. [24] J. P. Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, J. W. Seo, “High-K dielectrics for the gate stack,” J. Appl. Phys., 100, 051610, 2006. [25] R. W. Murto, M. I. Gardner, G. A. Brown, P. M. Zeitzoff, and H. R. Huff, “Challenges in gate stack engineering,” Solid State Technol., 46 , 43, 2003. [26] D. Mathiot, A. Straboni, E. Andre, and P. Debenest, “Boron diffusion through thin gate oxides: Influence of nitridation and effect on the Si/SiO2 interface electrical characteristics,” J. Appl. Phys., 73, pp.8215-8220, 1993. [27] T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys., 77, pp.417-419, 1995. [28] Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hegde, B. Maiti, and S. A. Ajuria, “Furnace grown gate oxynitride using nitric oxide (NO),” 41, pp.1608-1613, 1994. [29] M. Bhat, D. J. Wristers, L.-K. Han, J. Yan, H. J. Fulford, and D. L. Kwong, “Electrical properties and reliability of MOSFET's with rapid thermal NO-nitrided SiO2 gate dielectrics,” IEEE Trans. on Electron Devices 42, pp.907-914, 1995. [30] D. Ishikawa, S. Sakai, K. Katsuyama, A. Hiraiwa, “Nitride-sandwiched-oxide gate insulator for low power CMOS,” IEDM Tech. Digest, 869-872, 2002. [31] X. Guo and T. P. Ma, “Tunneling leakage current in oxynitride: Dependence on oxygen/nitrogen content,” IEEE Electron Device Lett., 19, pp.207-209, 1998. [32] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Reports on Progress in Physics, 69, pp.327-396, 2006. [33] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol., 18, pp.1785-1791, 2000. [34] K. J. Hubbard, D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., 11, pp.2757-2776, 1996. [35] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol., 18, pp.1785-1791, 2000. [36] S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, “MOS characteristics of ultrathin CVD HfAlO gate dielectrics,” IEEE Electron Device Lett., 24, pp.556-558, 2003. [37] W. J. Qi, R. Nieh, B. H. Lee, K. Onishi, L. G. Kang, Y. Jeon, J. C. Lee, V. Kaushik, B. Y. Neuyen, L. Prabhu, K. Eisenbeiser, “Performance of MOSFETs with ultra thin ZrO2 and Zr silicate gate dielectrics,” 2000 Symposium on VLSI Technology. Digest of Technical Papers, pp.40-41, 2000. [38] M. Copel, M. Gribelyuk, E. Gusev, “Structure and stability of ultrathin zirconium oxide layers on Si(001),” Applied Physics Letters, 76, pp.436-438, 2000. [39] T. S. Jeon, J. M. White, D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Applied Physics Letters, 78, pp.368-370, 2001. [40] L. Kang , B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Devices Lett., 21, pp.181-183, 2000. [41] H. Kim, A. Marshall, P. C. McIntyre, K. C. Saraswat, “Crystallization kinetics and microstructure-dependent leakage current behavior of ultrathin HfO2 dielectrics: In situ annealing studies,” Applied Physics Letters, 84, pp.2064-2066, 2004. [42] H. Lee, S. Jeon, H. Hwang, ” Electrical characteristics of a Dy-doped HfO2 gate dielectric,” Applied Physics Letters, 79, pp.2615-2617, 2001. [43] C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Materials Science and Engineering R Reports, 22, pp.269-322, 1998. [44] K. Kukli, M. Ritala, M. Leskela, et al., “Influence of TiO2 incorporation in HfO2 and Al2O3 based capacitor dielectrics,” Thin Solid Films, 515, pp.6447-6451, 2007. [45] H. S. Kim, S. A. Campbell, D. C. Gilmer, V. Kaushik, J. Conner, L. Prabhu, A. Anderson, “Determination of effects of deposition and anneal properties for tetranitratotitanium deposited TiO2 dielectrics,” J. Appl. Phys., 85, pp.3278-3281, 1999. [46] V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectronics Reliability, 41, pp.1057-1061, 2001. [47] M. Gurvitch, L Manchanda, J. M. Gibson, “Study of thermally oxidized yttrium films on silicon,” Applied Physics Letters, 51, pp.919-921, 1987. [48] J. Kwo, M. Hong, A. R. Kortan, et al., “Properties of high kappa gate dielectrics Gd2O3 and Y2O3 for Si,” J. Appl. Phys., 89, pp.3920-3927, 2001. [49] L. A. Ragnarsson, S. Guha, M. Copel, et al., “Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal-oxide-semiconductor field-effect transistors: Effective electron mobility,” Applied Physics Letters, 78, pp.4169-4171, 2001. [50] S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, M. C. Copel, “High-quality aluminum oxide gate dielectrics by ultra-high-vacuum reactive atomic-beam deposition,” J. Appl. Phys., 90, pp.512-514, 2001. [51] L. A. Ragnarsson, S. Guha, N. A. Bojarczuk, et al., ”Electrical characterization of Al2O3 n-channel MOSFETs with aluminum gates,” IEEE Electron Devices Lett., 22, pp.490-492, 2001. [52] S. Guha, E. Cartier, M. A. Gribelyuk, et al., “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics,” Applied Physics Letters, 77, pp.2710-2712, 2000. [53] E. P. Gusev, E. Cartier, D. A. Buchanan, et al., “Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues,” Microelectronic Engineering, 59, pp.341-349, 2001. [54] C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Hafnium oxide gate dielectric for strained-Si1-xGex,” Solid-State Electronics, 47, pp.1995-2000, 2003. [55] E. Miranda, “Effect of the series resistance on the Fowler-Nordheim tunneling characteristics of ultra-thin gate oxides,” 2005 Spanish Conference on Electron Devices, Proceedings, pp.41-44, 2005. [56] K. Tse, J. Robertson, “Defect passivation in HfO2 gate oxide by fluorine,” Applied Physics Letters, 89, 142914, 2006. [57] C. S. Lai, W. C. Wu, T. S. Chao, et al., “Suppression of interfacial reaction for HfO2 on silicon by pre-CF4 plasma treatment,” Applied Physics Letters, 89, 072904, 2006. [58] K. Seo, R. Sreenivasan, P. C. McIntyre, K. C. Saraswat, “Improvement in high-k (HfO2/SiO2) reliability by incorporation of fluorine,” IEDM Tech. Digest, pp.429-432, 2005. [59] C. S. Lai, W. C. Wu, K. M. Fang, J. C. Wang, S. J. Lin, ”Effects of post CF4 plasma treatment on the HfO2 thin film,” J. J. Appl. Phys., 44, pp.2307-2310, 2005. [60] W. C. Wu, C. S. Lai, J. C. Wang, J. H. Chen, M. W. Ma, T. S. Chao, “High-performance HfO2 gate dielectrics fluorinated by postdeposition CF4 plasma treatment,” Journal of The Electrochemical Society, 154, pp.H561-H565, 2007. [61] C. S. Lai, W. C. Wu, J. C. Wang, T. S. Chao, “Characteristics of fluorine implantation for HfO2 gate dielectrics with high-temperature postdeposition annealing,” J. J. Appl. Phys., 45, pp. 2893-2897, 2006. [62] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R. Clark, M. Niwa, D. L. Kwong, ”Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode,” IEDM Tech. Digest, 857-860, 2002. [63] N. Umezawa, K. Shiraishi, T. Ohno, et al., “First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high-k dielectrics,” Applied Physics Letters, 86, 143507, 2005. [64] J. H. Kim, T. J Park, M. Cho, et al., “Reduced Electrical Defects and Improved Reliability of Atomic-Layer-Deposited HfO2 Dielectric Films by In Situ NH3 Injection,” Journal of The Electrochemical Society, 156, pp.G48-G52, 2009. [65] D. J. DiMaria, E. Cartier, D. A. Buchanan, “Anode hole injection and trapping in silicon dioxide,” J. Appl. Phys., 80, pp.304-317, 1996. [66] E. Efthymiou, S. Bernardini, J. F. Zhang, et al., “Reliability degradation of thin HfO2/SiO2 gate stacks by remote RF hydrogen and deuterium plasma treatment,” Thin Solid Films, 517, pp.207-208, 2008. [67] T. M. Pan, C. S. Liao, H. H. Hsu, et al., “Excellent frequency dispersion of thin gadolinium oxide high-k gate dielectrics,” Applied Physics Letters, 87, 262908, 2005. [68] M. Balog, M. Schieber, M. Michman, S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41, pp.247-259, 1977. [69] F. C. Chiu, “Interface characterization and carrier transportation in metal/HfO2/silicon structure,” J. Appl. Phys., 100, 114102, 2006. [70] F. El Kamel, P. Gonon, C. Vallee, et al., “Electrode effects on the conduction mechanisms in HfO2-based metal-insulator-metal capacitors,” J. Appl. Phys., 106, 064508, 2009.
|