(3.237.178.91) 您好!臺灣時間:2021/03/07 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳壽賢
研究生(外文):Chen, Shou-Hsien
論文名稱:雙重電漿處理下二氧化鉿金屬-絕緣層-半導體電容器的電流傳導機制以及可靠度之研究
論文名稱(外文):Current conduction mechanisms and reliability properties of HfO2 MIS capacitor with dual plasma treatment
指導教授:張國明汪大暉
指導教授(外文):Chang, Kow-MingWang, Ta-Hui
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:112
中文關鍵詞:電漿二氧化鉿電流傳導機制
外文關鍵詞:plasmaHfO2Current conduction mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非結晶形態的二氧化矽閘極介電質在金氧半場效電晶體元件的製造上提供了許多的優點,像是熱穩定性,高品質的矽基板與二氧化矽的界面以及優良的電絕緣性。因此,二氧化矽在過去40年已經被普遍地應用在積體電路製程技術上。為了提升金氧半場效電晶體元件的特性,極薄的閘極介電質是必須的。由於氧化層厚度在65奈米製程之後將會小於1奈米,造成太高的閘極直接穿隧漏電流。因此,閘極介電質的微縮無法永遠持續下去。高介電常數閘極介電質能夠有效降低漏電流而且維持好的元件特性。在許多的高介電常數閘極介電質材料之中,由於較大的介電常數,相對大的能隙以及與矽之間良好的熱穩定性,二氧化鉿是最有潛力的。在本篇論文中,以Al/Ti/HfO2/Si金屬-絕緣層-半導體電容器作為控制樣品。結合沉積前氟電漿處理以及沉積後氮電漿處理的製程,我們稱為雙重電漿處理。此論文記述雙重電漿處理下的二氧化鉿金屬-絕緣層-半導體電容器電流傳導機制以及可靠度特性。所有經過雙重電漿處理的樣品都表現出電容密度的提升以及漏電流的降低。雙重電漿處理也能大大地降低表面狀態的數量以及抑制界面層的成長。電流傳導機制歸因於蕭基發射(Schottky emission),弗崙克爾-普爾發射(Frenkel-Poole emission)以及福勒-諾德海姆穿隧(Fowler-Nordheim tunneling)。蕭基發射主導於中低電(1.7-3.0 MV/cm)與高溫(>348K)時,弗崙克爾-普爾發射主導於中高電場 (4.0-6.0MV/cm),福勒-諾德海姆穿隧則是在高電場(>7MV/cm)下具有主導性。
Amorphous silicon dioxide gate dielectric proffered many advantages in fabrication of MOSFET device,such as thermodynamically stable,high-quality Si/SiO2 interface and excellent electrical isolation properties.Therefore silicon dioxide has been applied popularly in the integrated circuit process technology in the past 40 years.In order to promote the performance of MOSFET device,ultrathin gate dielectric was needed.Oxide thickness would be less than 1.0 nm for 65 nm technology node,leading to high gate direct tunneling leakage current.Therefore,the scaling down of gate dielectric could not go on forever.High-κ gate dielectric could effectively reduced leakage current and maintained good device performance.Among many dielectric materials,HfO2 is the most promising material due to its high dielectric constant,relatively large band gap,and good thermal stability with Si.In this thesis, Al/Ti/HfO2/Si metal-insulator-semiconductor capacitors were used as control samples.The process which combined pre-deposition plasma fluorination and post-deposition plasma nitridation, we called it dual plasma treatment.This thesis reported current conduction mechanisms and reliability properties of HfO2 MIS capacitors with dual plasma treatment.It indicated that all samples with dual plasma treatment showed the promotion of capacitance density and reduction of leakage current.Dual plasma treatment could also greatly reduce the number of interface states and suppress the growth of interfacial layer.The current conduction mechanisms could be attributed to Schottky emission(SE),the Frenkel-Poole (FP)emission,and Fowler-Nordheim(FN) tunneling in different ranges of electric field.Schottky emission(SE) dominated in low to medium electric field(1.7-3.0MV/cm) and at high temperature(>348K),Frenkel-Poole(FP) emission dominated in medium to high electric field(4.0-6.0MV/cm) and Fowler-Nordheim(FN) tunneling dominated in electric field(>7MV/cm).
Contents
Abstract(in Chinese) ....................................i Abstract(in English) ...................................iii
Acknowledgments(in Chinese) ...........,,..................v
Contents .................................................vi
Table Captions .........................................viii
Figure Captions ..........................................ix
Chapter 1 Introduction
1.1 Background ............................................1
1.2 The problem of poly-silicon as the gate electrode .....4
1.3 High-κ gate dielectric
1.3.1 Advantages of high-κ gate dielectric ...............5
1.3.2 Challenges of high-κ gate dielectric ...............5
1.3.3 Selections of high-κ gate dielectric ...............6
1.3.4 The reasons for using HfO2 ..........................9
1.4 Current conduction mechanisms
1.4.1 Schottky Emission (SE) .............................10
1.4.2 Frenkel-Poole (FP) emission ........................11
1.4.3 Fowler-Nordheim (FN) tunneling .....................12
1.5 Thesis organization ..................................12
Chapter 2 Motivation
2.1 Plasma fluorination ..................................14
2.2 Plasma nitridation ...................................15
2.3 Dual plasma treatment ................................16
Chapter 3 Experimental details of Al/Ti/HfO2/Si MIS capacitors
3.1 PECVD system for plasma treatment ....................17
3.2 MOVCD system for HfO2 deposition .....................19
3.3 Rapid thermal annealing (RTA) system .................20
3.4 Electron beam evaporation system .....................21
3.5 Flowchart of fabrication of MIS capacitors ...........22
3.6 The MIS capacitors measurement .......................24
Chapter 4 Reliability properties of Al/Ti/HfO2/Si MIS capacitors
4.1 Electrical characteristics
4.1.1 C-V characteristics ................................25
4.1.2 J-V characteristics ................................26
4.2 Reliability characteristics
4.2.1 Breakdown voltage ..................................................27
4.2.2 Capacitance variation with constant voltage stress .28
4.2.3 Capacitance variation with frequency modulation ....29
Chapter 5 Current conduction in Al/Ti/HfO2/Si MIS capacitors
5.1 Schottky Emission (SE) ...............................31
5.2 Frenkel-Poole (FP) emission ..........................33
5.3 Fowler-Nordheim (FN) tunneling .......................34
Chapter 6 Conclusions and future work
6.1 Conclusions ..........................................36
6.2 Future work ..........................................37
Table ....................................................38
Figure ...................................................43
Reference ...............................................104
[1] G. E. Moore, Electronics, 38, 114, 1965.
[2] Takashi Hori,“Gate Dielectrics and MOS ULSIs,”Springer, New York, 1997.
[3] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” Proceedings of the IEEE, 87, pp.668-678, 1999.
[4] G. Baccarani, M. R. Wordeman, and R. H. Dennard, “Generalized Scaling Theory and Its Application to a 1/4 Micrometer MOSFET Design,” IEEE Trans. Electron Devices, 31, pp.452-462, 1984.
[5] P. A. Packan, “Perspectives: Device physics - Pushing the limits,” Science, 285, pp.2079-2081, 1999.
[6] M. Schulz, “Interface states at the SiO2-Si interface,” Surface Science, 132, pp.422-455, 1983.
[7] M. Nandakumar, A. Chatterjee, S. Sridhar, K. Joyner, M. Rodder, I. C. Chen, “Shallow trench isolation for advanced ULSI CMOS technologies,” IEDM Tech. Digest, 133-136, 1998.
[8] S. Wolf, “Silicon Processing for the VLSI Era, Vol. 2: Process Integration,” Lattice Press, 1990.
[9] H. Iwai, “CMOS technology - Year 2010 and beyond,” IEEE journal of solid-state circuits, 34, pp.357-366, 1999.
[10] R. Rios, N. D. Arora, “Determination of ultra-thin gate oxide thicknesses for CMOS structures using quantum effects,” IEDM Tech. Digest, 613-616, 1994.
[11] M. Schulz, “The end of the road for silicon,” Nature, 399, pp.729-730, 1999.
[12] X. Y. Liu, J. F. Kang, R. Q. Han, “Direct tunneling current model for MOS devices with ultra-thin gate oxide including quantization effect and polysilicon depletion,” Solid State Communications, 125, pp.219-223, 2003.
[13] S. H. Lo, D. A. Buchanan, Y. Tuar, W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET,” IEEE Electron Devices Lett., 18, pp.209-211, 1997.
[14] R. M. Wallace, G. D. Wilk, ”High-kappa dielectric materials for microelectronics,” Critical Reviews in Solid State and Materials Sciences, 28, pp.231-285, 2003.
[15] R. M. Wallace, G. D. Wilk, ”High-k Gate Dielectric Materials,” MRS Bulletin, Special Issue, 192-197, 2002.
[16] Howard Huff, David Gilmer, “High Dielectric Constant Materials: VLSI MOSFET Applications,” Springer, London, 2004.
[17] K. S. Krisch, M. L. Green, F. H. Baumann, D. Brasen, L. C. Feldman, L. Manchanda, “Thickness dependence of boron penetration through O2 and N2O-grown gate oxides and its impact on threshold voltage variation,” IEEE Trans. on Electron Devices, 43 , pp.982-990, 1996.
[18] Z. J. Ma, J. C. Chen, Z. H. Liu, J. T. Krick, Y. C. Cheng, C. Hu, P. K. Ko, “Suppression of boron penetration in p+ polysilicon gate P-MOSFET's using low-temperature gate-oxide N2O anneal,” IEEE Electron Devices Lett., 15, pp.109-111, 1994.
[19] C. Leveugle, P. K. Hurley, A. Mathewson, S. Moran, E. Sheehan, A. Kalnitsky, A. Lepert, I. Beinglass, M.Venkatesan, “Impact of the polysilicon doping level on the properties of the silicon/oxide interface in polysilicon/oxide/silicon capacitor structures,” Microelectronic Engineering, 36, pp.215-218, 1997.
[20] W. J. Cho, J. E. Hong, W. H. Jin, K. S. Lee, S. K. Rha, H. S. Kim, “Improvement of sheet resistance and gate oxide integrity using phosphorus ion implantation in tungsten polycide gate,” Solid-State Electronics, 44, pp.393-399, 2000.
[21] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, “High-kappa/metal-gate stack and its MOSFET characteristics,” IEEE Electron Devices Lett., 25, pp.408-410, 2004.
[22] M. Casse, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, F. Boulanger, “Carrier transport in HfO2/metal gate MOSFETs: Physical insight into critical parameters,” IEEE Trans. on Electron Devices 53, pp.759-768, 2006.
[23] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243-5275, 2001.
[24] J. P. Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, J. W. Seo, “High-K dielectrics for the gate stack,” J. Appl. Phys., 100, 051610, 2006.
[25] R. W. Murto, M. I. Gardner, G. A. Brown, P. M. Zeitzoff, and H. R. Huff, “Challenges in gate stack engineering,” Solid State Technol., 46 , 43, 2003.
[26] D. Mathiot, A. Straboni, E. Andre, and P. Debenest, “Boron diffusion through thin gate oxides: Influence of nitridation and effect on the Si/SiO2 interface electrical characteristics,” J. Appl. Phys., 73, pp.8215-8220, 1993.
[27] T. Aoyama, K. Suzuki, H. Tashiro, Y. Toda, T. Yamazaki, K. Takasaki, and T. Ito, “Effect of fluorine on boron diffusion in thin silicon dioxides and oxynitride,” J. Appl. Phys., 77, pp.417-419, 1995.
[28] Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hegde, B. Maiti, and S. A. Ajuria, “Furnace grown gate oxynitride using nitric oxide (NO),” 41, pp.1608-1613, 1994.
[29] M. Bhat, D. J. Wristers, L.-K. Han, J. Yan, H. J. Fulford, and D. L. Kwong, “Electrical properties and reliability of MOSFET's with rapid thermal NO-nitrided SiO2 gate dielectrics,” IEEE Trans. on Electron Devices 42, pp.907-914, 1995.
[30] D. Ishikawa, S. Sakai, K. Katsuyama, A. Hiraiwa, “Nitride-sandwiched-oxide gate insulator for low power CMOS,” IEDM Tech. Digest, 869-872, 2002.
[31] X. Guo and T. P. Ma, “Tunneling leakage current in oxynitride: Dependence on oxygen/nitrogen content,” IEEE Electron Device Lett., 19, pp.207-209, 1998.
[32] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Reports on Progress in Physics, 69, pp.327-396, 2006.
[33] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol., 18, pp.1785-1791, 2000.
[34] K. J. Hubbard, D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., 11, pp.2757-2776, 1996.
[35] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol., 18, pp.1785-1791, 2000.
[36] S. H. Bae, C. H. Lee, R. Clark, and D. L. Kwong, “MOS characteristics of ultrathin CVD HfAlO gate dielectrics,” IEEE Electron Device Lett., 24, pp.556-558, 2003.
[37] W. J. Qi, R. Nieh, B. H. Lee, K. Onishi, L. G. Kang, Y. Jeon, J. C. Lee, V. Kaushik, B. Y. Neuyen, L. Prabhu, K. Eisenbeiser, “Performance of MOSFETs with ultra thin ZrO2 and Zr silicate gate dielectrics,” 2000 Symposium on VLSI Technology. Digest of Technical Papers, pp.40-41, 2000.
[38] M. Copel, M. Gribelyuk, E. Gusev, “Structure and stability of ultrathin zirconium oxide layers on Si(001),” Applied Physics Letters, 76, pp.436-438, 2000.
[39] T. S. Jeon, J. M. White, D. L. Kwong, “Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100),” Applied Physics Letters, 78, pp.368-370, 2001.
[40] L. Kang , B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Devices Lett., 21, pp.181-183, 2000.
[41] H. Kim, A. Marshall, P. C. McIntyre, K. C. Saraswat, “Crystallization kinetics and microstructure-dependent leakage current behavior of ultrathin HfO2 dielectrics: In situ annealing studies,” Applied Physics Letters, 84, pp.2064-2066, 2004.
[42] H. Lee, S. Jeon, H. Hwang, ” Electrical characteristics of a Dy-doped HfO2 gate dielectric,” Applied Physics Letters, 79, pp.2615-2617, 2001.
[43] C. Chaneliere, J. L. Autran, R. A. B. Devine, B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Materials Science and Engineering R Reports, 22, pp.269-322, 1998.
[44] K. Kukli, M. Ritala, M. Leskela, et al., “Influence of TiO2 incorporation in HfO2 and Al2O3 based capacitor dielectrics,” Thin Solid Films, 515, pp.6447-6451, 2007.
[45] H. S. Kim, S. A. Campbell, D. C. Gilmer, V. Kaushik, J. Conner, L. Prabhu, A. Anderson, “Determination of effects of deposition and anneal properties for tetranitratotitanium deposited TiO2 dielectrics,” J. Appl. Phys., 85, pp.3278-3281, 1999.
[46] V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectronics Reliability, 41, pp.1057-1061, 2001.
[47] M. Gurvitch, L Manchanda, J. M. Gibson, “Study of thermally oxidized yttrium films on silicon,” Applied Physics Letters, 51, pp.919-921, 1987.
[48] J. Kwo, M. Hong, A. R. Kortan, et al., “Properties of high kappa gate dielectrics Gd2O3 and Y2O3 for Si,” J. Appl. Phys., 89, pp.3920-3927, 2001.
[49] L. A. Ragnarsson, S. Guha, M. Copel, et al., “Molecular-beam-deposited yttrium-oxide dielectrics in aluminum-gated metal-oxide-semiconductor field-effect transistors: Effective electron mobility,” Applied Physics Letters, 78, pp.4169-4171, 2001.
[50] S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, M. C. Copel, “High-quality aluminum oxide gate dielectrics by ultra-high-vacuum reactive atomic-beam deposition,” J. Appl. Phys., 90, pp.512-514, 2001.
[51] L. A. Ragnarsson, S. Guha, N. A. Bojarczuk, et al., ”Electrical characterization of Al2O3 n-channel MOSFETs with aluminum gates,” IEEE Electron Devices Lett., 22, pp.490-492, 2001.
[52] S. Guha, E. Cartier, M. A. Gribelyuk, et al., “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics,” Applied Physics Letters, 77, pp.2710-2712, 2000.
[53] E. P. Gusev, E. Cartier, D. A. Buchanan, et al., “Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues,” Microelectronic Engineering, 59, pp.341-349, 2001.
[54] C. K. Maiti, S. Maikap, S. Chatterjee, S. K. Nandi, and S. K. Samanta, “Hafnium oxide gate dielectric for strained-Si1-xGex,” Solid-State Electronics, 47, pp.1995-2000, 2003.
[55] E. Miranda, “Effect of the series resistance on the Fowler-Nordheim tunneling characteristics of ultra-thin gate oxides,” 2005 Spanish Conference on Electron Devices, Proceedings, pp.41-44, 2005.
[56] K. Tse, J. Robertson, “Defect passivation in HfO2 gate oxide by fluorine,” Applied Physics Letters, 89, 142914, 2006.
[57] C. S. Lai, W. C. Wu, T. S. Chao, et al., “Suppression of interfacial reaction for HfO2 on silicon by pre-CF4 plasma treatment,” Applied Physics Letters, 89, 072904, 2006.
[58] K. Seo, R. Sreenivasan, P. C. McIntyre, K. C. Saraswat, “Improvement in high-k (HfO2/SiO2) reliability by incorporation of fluorine,” IEDM Tech. Digest, pp.429-432, 2005.
[59] C. S. Lai, W. C. Wu, K. M. Fang, J. C. Wang, S. J. Lin, ”Effects of post CF4 plasma treatment on the HfO2 thin film,” J. J. Appl. Phys., 44, pp.2307-2310, 2005.
[60] W. C. Wu, C. S. Lai, J. C. Wang, J. H. Chen, M. W. Ma, T. S. Chao, “High-performance HfO2 gate dielectrics fluorinated by postdeposition CF4 plasma treatment,” Journal of The Electrochemical Society, 154, pp.H561-H565, 2007.
[61] C. S. Lai, W. C. Wu, J. C. Wang, T. S. Chao, “Characteristics of fluorine implantation for HfO2 gate dielectrics with high-temperature postdeposition annealing,” J. J. Appl. Phys., 45, pp. 2893-2897, 2006.
[62] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R. Clark, M. Niwa, D. L. Kwong, ”Thermally stable CVD HfOxNy advanced gate dielectrics with poly-Si gate electrode,” IEDM Tech. Digest, 857-860, 2002.
[63] N. Umezawa, K. Shiraishi, T. Ohno, et al., “First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high-k dielectrics,” Applied Physics Letters, 86, 143507, 2005.
[64] J. H. Kim, T. J Park, M. Cho, et al., “Reduced Electrical Defects and Improved Reliability of Atomic-Layer-Deposited HfO2 Dielectric Films by In Situ NH3 Injection,” Journal of The Electrochemical Society, 156, pp.G48-G52, 2009.
[65] D. J. DiMaria, E. Cartier, D. A. Buchanan, “Anode hole injection and trapping in silicon dioxide,” J. Appl. Phys., 80, pp.304-317, 1996.
[66] E. Efthymiou, S. Bernardini, J. F. Zhang, et al., “Reliability degradation of thin HfO2/SiO2 gate stacks by remote RF hydrogen and deuterium plasma treatment,” Thin Solid Films, 517, pp.207-208, 2008.
[67] T. M. Pan, C. S. Liao, H. H. Hsu, et al., “Excellent frequency dispersion of thin gadolinium oxide high-k gate dielectrics,” Applied Physics Letters, 87, 262908, 2005.
[68] M. Balog, M. Schieber, M. Michman, S. Patai, “Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films 41, pp.247-259, 1977.
[69] F. C. Chiu, “Interface characterization and carrier transportation in metal/HfO2/silicon structure,” J. Appl. Phys., 100, 114102, 2006.
[70] F. El Kamel, P. Gonon, C. Vallee, et al., “Electrode effects on the conduction mechanisms in HfO2-based metal-insulator-metal capacitors,” J. Appl. Phys., 106, 064508, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔