|
[1] D. Lin, G. Brammertz, S. Sioncke, C. Fleischmann, A. Delabie, K. Martens, H. Bender, T. Conard, W. H. Tseng, J. C. Lin, W. E. Wang, K. Temst, A. Vatomme, J. Mitard, M. Caymax, M. Meuris, M. Heyns, T. Hoffmann, “Enabling the high-performance InGaAs/Ge CMOS: a common gate stack solution,” Tech. Dig. Int. Electron Devices Meet., p. 327, 2009. [2] J. Robertsona, B. Falabretti, “Band offsets of high K gate oxides on III-Vsemiconductor,” J. Appl. Phys., vol. 100, p. 014111, 2006. [3] K. Iiyama, Y. Kita, Y. Ohta, M. Nasuno, S. Takamiya, K. Higashimine, and N. Ohtsuka, IEEE Trans. Electron Devices, vol. 49, p. 1856, 2002. [4] J. K. Yang, M. G. Kang, and H. H. Park, J. Appl. Phys. vol. 96, p. 4811, 2004. [5] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H. J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, IEEE Electron Device Lett., vol. 24, p. 209, 2003. [6] M. Xu, Y. Q. Wu, O. Koybasi, T. Shen, and P. D. Ye, “Metal-oxide-semiconductor field-effect transistors on GaAs (111)A surface with atomic-layer-deposited Al2O3 as gate dielectrics,” Appl. Phys. Lett., vol. 94, p. 212104, 2009. [7] B. Yang, P. D. Ye, J. Kwo, M. R. Frei, H. J. L. Gossnann, J. P. Mannaerts, M. Sergent, M. Hong, K. Ng, and J. Bude, J. Cryst. Growth, vol. 251, p. 837, 2003. [8] H.-L. Lu, L. Sun, S.-J. Ding, M. Xu, D. W. Zhang, and L.-K. Wang, “Characterization of atomic-layer-deposited Al2O3/GaAs interface improved by NH3 plasma pretreatment,” Appl. Phys. Lett., vol. 89, p. 152910, 2006. [9] M. Zhu, C.-H. Tung, and Y.-C. Yeo, “Aluminum oxynitride interfacial passivation layer for high-permittivity gate dielectric stack on gallium arsenide,” Appl. Phys. Lett. vol. 89, p. 202903, 2006. [10] M.-K. Lee, C.-F. Yen, J.-J. Huang, and S.-H. Lin, “Electrical characteristics of postmetallization-annealed MOCVD-TiO2 films on ammonium sulfide-treated GaAs,” J. Electrochem. Soc., vol. 153, p. F266, 2006. [11] H.-S. Kim, I. Ok. M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, “Metal gate-HfO2 metal-oxide-semiconductor capacitors on n-GaAs substrate with silicon/germanium interfacial passivation layers,” Appl. Phys. Lett., vol. 89, p. 222903, 2006. [12] C.G.B. Garrett and W.H. Brattain. Physical theory of semiconductor surfaces. Physical Review, vol. 99, p. 376-387, 1956. [13] K. Lehovec. Frequency dependence of the impedance of distributed surface states in MOS structures. Appl. Phys. Lett., vol. 8, p. 48, 1966. [14] E.H. Nicollian and A. Goetzberger. The Si/SiO2 interface - electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J., vol. 46, p. 1055, December 1967. [15] Nicollian and Brews. MOS (Metal Oxide Semiconductor) Physics and Technol-ogy., Wiley & Sons, New York, 1982. [16] E.M. Vogel, W.K. Henson, C.A. Richter, and J.S. Suehle, “Limitation of Conductance to the Measurement of the Interface State Density of MOS Capacitors with Tunneling Gate Dielectrics,” IEEE Trans. Electron Dev., vol. 47, p. 601-608, March 2000; T.P. Ma and R.C.Barker, “Surface-State Spectra from Thick-oxide MOS Tunnel Junctions,” Solid-State Electron. vol. 17, p. 913-929, Sept. 1974. [17] G. Brammertz, H. C. Lin, K. Martens, D. Mercier, C. Merckling, J. Penaud,c C. Adelmann, S. Sioncke, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, “Capacitance–Voltage characterization of GaAs–Oxide Interfaces,” Journal of The Electrochemical Society, vol.155, p. 945-950, 2008. [18] C.N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces,” IEEE Trans. Electron Dev., vol. 13, p. 701-703, Oct. 1966. [19] R. Castagne and A. Vapaille, “Description of the SiO2-Si Interface Properties by Means of Very Low Frequency MOS Capacitance Measurements,“ Surf. Sci., vol. 28, p. 157-193, Nov. 1971. [20] E. Duval and E. Lheurette, “Characterization of Charge Trapping at the Si-SiO2 (100) Interface Using high temperature Conductance Spectroscopy,” Microelectron. Eng., vol.65, p. 103-112, Jan. 2003. [21] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, J. Kim, and R. M. Wallace, “Frequency Dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation,” Appl. Phys. Lett., vol. 91, p. 183512, 2007. [22] W. E. Spicer, N. Newman, C. J. Spindt, Z. Liliental‐Weber, and E. R. Weber, “Pinning and Fermi level movement at GaAs surfaces and interfaces,” J. Vac. Sci. Technol. A, vol. 8, p. 2084, 1990. [23] M. Xu, Y. Q. Wu, O. Koybasi, T. Shen, and P. D. Ye, “Metal-oxide-semiconductor field-effect transistors on GaAs (111)A surface with atomic-layer-deposited Al2O3 as gate dielectrics,” Appl. Phys. Lett., vol. 94, p. 212104, 2009. [24] Martin M. Frank, Glen D. Wilk, Dmitri Starodub, Torgny Gustafsson, Eric Garfunkel, Yves J. Chabal, John Grazul, and David A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, p. 152904, 2005. [25] C. L. Hinkle, A. M. Sonnet, E. M. Voge, S. McDonnel, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett., vol. 92, p. 071901, 2008. [26] Hang Dong Lee, Tian Feng, Lei Yu, Daniel Mastrogiovanni, Alan Wan, Torgn Gustafsson, and Eric Garfunkel, “Reduction of native oxides on GaAs during atomic layer growth of Al2O3,” Appl. Phys. Lett., vol. 94, p.222108, 2009. [27] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, “Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces,” Appl. Phys. Lett., vol. 93, p.252905, 2008. [28] D. S. L. Mui, D. Biswas, J. Reed, A. L. Demirel, S. Strite, and H. Morkoc, “Investigations of the Si3N4/Si/n-GaAs insulator-semiconductor interface with lowinterface trap density,” Appl. Phys. Lett., vol. 60, p. 2511, 1992. [29] Z. Chen and D. Gong, “Physical and electrical properties of a Si3N4/Si/GaAs metal–insulator–semiconductor structure,” J. Appl. Phys., vol. 90, p. 4205, 2001. [30] M. Xu, K. Xu, R. Contreras,) M. Milojevic, T. Shen, O. Koybasi, Y.Q. Wu, R.M.Wallace, and P. D. Ye, “New Insight into Fermi-Level Unpinning on GaAs: Impact of Different Surface Orientations,” Tech. Dig. Int. Electron Devices Meet., p. 865, 2009. [31] A. Jaouad, V. Aimez, C. Aktik, K. Bellatreche, and A. Souifi, “Fabrication of (NH4)2S passivated GaAs metal-insulator-semiconductor devices using low-frequency plasma-enhanced chemical vapor deposition,” J. Vac. Sci. Technol. A, vol. 22, p. 1027, 2004. [32] M.-K. Lee, C.-F. Yen, J.-J. Huang, and S.-H. Lin, “Electrical characteristics of postmetallization-annealed MOCVD-TiO2 films on ammonium sulfide-treated GaAs,” J. Electrochem. Soc., vol. 153, p. F266, 2006. [33] M. Passlack, J. K. Abrokwah, Z. Yu, R. Droopad, C. Overgaard, H. Kawayoshi, “Thermally induced oxide crystallinity and interface destruction in Ga2O3–GaAs structures,” Appl. Phys. Lett., vol. 82, p. 1691, 2003. [34] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace,” GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett., vol. 92, p. 071901, 2008. [35] H. Hasegawa and H. Ohno, ” Unified disorder induced gap state model for insulator- semiconductor and metal–semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, p. 1130, 1986. [36] R. Chau, Challenges and opportunities of III–V nanoelectronics for future logic applications (invited plenary talk), in: Conference Digest of IEEE Device Research Conference, University Park, PA, USA, p. 3 June 26–28, 2006 . [37] R. Chau, S. Datta, M. Doczy, B. Jin, J. Kavaliers, A. Majumdar, M. Metz, M. Radosavljevic, IEEE Trans. Nanotechnol., vol. 4, p. 153, 2005. [38] See Int. Technol. Roadmap for Semiconductors 2007 Edition for “Process Integration, Devices and Structures” at http://www.itrs.net/Links/2007ITRS/Home2007.htm. [39] D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, “Ge (100) and (111) n- and p-FETs with high mobility and low-T mobility characterization,” IEEE Trans. Electron Devices, vol. 56, p. 648, 2009. [40] P. Zimmerman, G. Nicholas, B. De Jaeger, B. Kaczer, A. Stesmans, L.-A. Ragnarsson, D. P. Brunco, F. E. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, and M. M. Heyns, “High performance Ge p-MOS devices using a Si-compatible process flow,” Tech. Dig. Int. Electron Device Meet., p. 655, 2006. [41] H.-C. Chin, M. Zhu, Z.-C. Lee, X. Liu, K.-M. Tan, H. K. Lee, L. Shi, L.-J. Tang, C.-H. Tung, G.-Q. Lo, L.-S. Tan, and Y.-C. Yeo, “A new silane-ammonia surface passivation technology for realizing inversion-type surface-channel GaAs n-MOSFET with 160 nm gate length and high-quality metal-gate/high-k dielectric stack,” Tech. Dig. Int. Electron Devices Meet., p. 383, 2008. [42] M. Xu, K. Xu, R. Contreras, M. Milojevic, T. Shen, O. Koybasi, Y.Q. Wu, R.M. Wallace, and P. D. Ye, “New Insight into Fermi-Level Unpinning on GaAs: Impact of Different Surface Orientations,” Tech. Dig. Int. Electron Devices Meet., p. 865, 2009. [43] N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M.B. Santos, J. Lee, S. Datta, P. Majhi, and W. Tsai, “Addressing the gate stack challenge for high mobility InxGa1-xAs channels for FETs,” Tech. Dig. Int. Electron Devices Meet., p. 363, 2008. [44] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding and R. Chau, “High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (Vcc=0.5V) logic applications,” Tech. Dig. Int. Electron Devices Meet., p. 727, 2008. [45] P. D. Ye, “Main determinants for III–V metal-oxide-semiconductor field-effect transistors (invited),” J. Vac. Sci. Technol. A., vol. 26, p. 697, 2008. [46] F. Zhu, H. Zhao, I. Ok, H. S. Kim, J. Yum, J. C. Lee, N. Goel, W. Tsai, C. K. Gaspe, and M. B. Santos, “Effects of anneal and silicon interface passivation layer thickness on device characteristics of In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors,” Electrochem. Solid-State Lett., vol. 12, p. H131, 2009. [47] H.-C. Chin, M. Zhu, X. Liu, H.-K. Lee, L. Shi, L.-S. Tan, and Y.-C. Yeo, “Silane- ammonia surface passivation for gallium arsenide surface-channel n-MOSFET,” IEEE Electron Device Lett., vol. 30, p. 110, 2009. [48] C.-C. Cheng, C.-H. Chien, G.-L. Luo, C.-H. Yang, C.-K. Tseng, H.-C. Chiang, and C.-Y. Chang, “Improved electrical properties of Gd2O3/GaAs capacitor with modified wet-chemical clean and sulfidization procedures,” J. Electrochem. Soc., vol. 155, p. G56, 2008. [49] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett., vol. 92, p. 071901, 2008. [50] Hang Dong Lee, Tian Feng, Lei Yu, Daniel Mastrogiovanni, Alan Wan, Torgny Gustafsson, and Eric Garfunkel, “Reduction of native oxides on GaAs during atomic layer growth of Al2O3,” Appl. Phys. Lett., vol. 94, p. 222108, 2009. [51] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, “Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces ,” Appl. Phys. Lett., vol. 93, p. 252905, 2008. [52] Fischetti M. V., Wang L., Yu B., Sachs, Asbeck P. M., Taur Y., and Rodwell M., "Simulation of electron transport in high-mobility MOSFETs: density of states Bottleneck and source starvation,” Int. Electron Devices Meet. Tech. Dig., 2007, pp.109–112. [53] Levinshtein M., Rumyantsev S., and Shur M., ”Handbook Series on Semiconductor Parameters Volume 1: Si, Ge, C(diamond), GaAs, GaP, GaSb, InAs, InP, InSb,” World Scientific, Singapore, p. 77–82, 1996.
|