跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 15:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅致中
研究生(外文):Fu, Chih-Chung
論文名稱:整合於可攜式腦心監護系統之高能源效率4通道獨立成份分析處理器
論文名稱(外文):A Power-Efficient VLSI Design of a 4-Channel Independent Component Analysis Processor for Portable Brain-Heart Monitoring Systems
指導教授:方偉騏
指導教授(外文):Fang, Wai-Chi
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:85
中文關鍵詞:資訊最大化獨立成份分析腦波訊號處理心率變異率分析擴散式光學影像重建整合型生醫系統藍牙傳輸可攜式系統數位信號處理
外文關鍵詞:InfomaxIndependent Component AnalysisEEG processingHeart Rate VariabilityDiffuse Optical TomographyIntegrated Health-Care SystemBluetooth Data TransmissionPortable SystemDigital Signal Processing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
  近年來快速增加的老年人口比例已然成為各國必需面臨的重要問題,整合型健康照護系統已經成為電子領域發展的重點。本論文由三個應用情境包括緊急醫療需求(如救護車上之緊急量測)、長期觀測與照護(老年退化性疾病)與腦認知科學的研究為出發點,提出一針對腦電訊號(EEG)、心電訊號(EKG)處理分析與擴散光學腦部影像重建(DOT)所構成之整合型系統之雛型設計,進以推動針對此三類系統的可攜性整合型醫療儀器之發展。
  由於生理電信號中最微弱的腦電信號通常與肌電信號(EMG)中的眼動信號與眨眼信號一起混合並量測,以獨立成份分析為方法的人工雜訊濾除技術已發展許久。但由於獨立成份分析的運算複雜度過高,腦波的應用通常受到離線運算的嚴重限制。本論文針對所提出整合型系統中的腦電信號處理所使用的四通道即時獨立成份分析器之設計與實作以一完整章節加以詳述。由於可攜式儀器的基本需求即為低功率與低成本,多種設計技巧與最佳化規格分析如三重循環記憶體的配置、鏡像非線性查表單元的設計與ICA訓練、成份萃取間的管線排程皆被用來降低功率消耗與硬體成本。此ICA硬體設計已由聯電90奈米製程下線並測試。晶片的核心面積為0.58平方毫米。量測數據顯示若使用80 Hz的取樣頻率,並使用0.5 MHz的工作頻率與0.6 V的核心電壓時,可達到最低0.312毫瓦的功率消耗。
  此獨立成份分析模組也與一心率變異率分析器、一擴散光學影像重建模組一同整合於一實驗性腦心監護系統之中。由前端訊號擷取模組所得到的生醫訊號被傳送至相應的即時運算引擎進行分析處理,處理完的結果與原始訊號皆由一無損失性生醫信號壓縮模組進行資料壓縮,再以一商業藍牙模組傳至臨近的生醫資訊工作站進行3D顯像與遠端觀察與診斷。此生醫訊號壓縮模組的平均壓縮率可達2.5,此壓縮率可被視為在無線傳輸上面的功率節省。系統中的資料流順序主要由一固定優先權資料選擇器與一三級向後資料流控制機制所影響,而這樣的設計也能提高各模組的輸出緩衝記憶體使用率,如此一來可以造成較少的傳輸緩衝記憶體使用。獨立成份分析與心率變異率分析引擎皆以真實生理訊號驗證,並顯示優良的分析結果。而腦影像重建引擎則以一模型來顯示其分析與真實情況的一致性。
    Since the twenty-first century, the fast increment of an aged population has become a worldwide problem. Therefore, integrated health-care systems have become an important topic for electrical engineers. In this thesis, focusing on three application scenarios including emergency medical care (e.g. EEG, EKG measurements on ambulance or DOT for fast cerebral hemorrhage check), long-term observation and monitoring (for patients suffer from chronic ailment) and researches on brain and cognitive science, we propose a preliminary design of an integrated health-care system comprising electroencephalogram (EEG) and electrocardiogram (EKG) signal analysis and processing together with diffuse optical tomography for brain imaging. The significance of this system is to enable the practical development of such portable health-care devices for brain heart monitoring.
Since the EEG is the feeblest one of all physiological electrical signals usually contaminated by ocular artifacts (e.g. eye-blink artifact and eye-movement artifact), the artifact removal techniques using independent component analysis (ICA) has been developed for a long time. Because of the compelling computation complexity of ICA algorithm directly inherits from the possible dependency in each channel, applications that analyze EEG signals are usually heavily restricted by the off-line ICA computation. One complete chapter is used to describe the design and implementation of the 4-channel ICA processor employed in the proposed integrated system as the EEG processing element. Since the two basic requirements for portable instruments are low-power and low-cost, various design techniques and optimized specification analyses like three-bank circular memory allocation, an mirrored non-linear lookup unit and the operation pipelining between the ICA training and component extraction are all adopted to reduce the power consumption and hardware cost. The designed ICA processor is fabricated using UMC 90 nm CMOS technology, and the core area of the chip is 0.58 mm2. Performance measurements done by Agilent 93000 SoC Tester have shown that when using 80 Hz sample rate, 0.5 MHz operation frequency and 0.6 V core power, the lowest power consumption of 0.312 mW is achieved under the worst cast of 512 training iterations.
Together with an HRV and fNIR-DOT processor, the designed ICA processor is integrated in an experimental brain heart monitoring system. EEG, EKG and near-infrared signals acquired from the analog front-end IC are processed in real-time or bypassed according to user configurations. Processed data and raw data are compressed by a lossless biomedical data compressor and sent to a remote science station by a commercial Bluetooth module for further analysis, 3-D visualization and remote diagnosis. The biomedical signal compressor achieves an average compression ratio (CR) of 2.5 which is translated into power saving during wireless transmission. The data flow in the system is mainly controlled by a prioritized data selector and a three-stage backward handshaking mechanism, and the design can increase the utilization of the output buffers inside each processor so that the data transmission buffer can be reduced. The ICA and HRV processor are verified by real EEG and EKG signals while the DOT processor is verified by an experimental model.
中文摘要 i
Abstract iii
誌謝 vi
Contents vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Three Common Human Health Indicators 1
1.1.1 Electroencephalogram 1
1.1.2 Near-Infrared Spectrogram on Human Tissue 4
1.1.3 Electrocardiogram 5
1.2 The Need for an Integrated Health-Care Solution 8
1.3 Application Scenarios 9
1.3.1 Emergency Use 10
1.3.2 Long-term Observation and Monitoring 10
1.3.3 Research on Brain and Cognitive Science 12
1.4 Importance of This Work 12
1.5 Organization of the Thesis 13
Chapter 2 4-Channel Independent Component Analysis Processor 15
2.1 Independent Component Analysis 15
2.1.1 Blind Source Separation 15
2.1.2 Entropy and Mutual Information 17
2.1.3 Infomax ICA 19
2.2 Design of the 4-Channel ICA Processor 25
2.2.1 Overall Architecture of the ICA Processor 26
2.2.2 Stage1 Unit and the Data Windowing Technique 28
2.2.3 Whitening Unit 34
2.2.4 Infomax ICA Training Unit 35
2.2.5 ICA Computation Unit 41
2.3 Performance Analysis of the 4-Channel ICA Processor 42
2.3.1 Performance Analysis Using Super-Gaussian Pattern 43
2.3.2 Performance Analysis Using Real EEG Patterns 44
2.3.2.1 Pattern 1 – Stable EEG without Artifact 45
2.3.2.2 Pattern 2 – Stable EEG without Artifact 47
2.3.2.3 Pattern 3 – EEG Contaminated by Eye-Blink Artifact 49
2.3.2.4 Pattern 4 – EEG Contaminated by Eye-Blink Artifact 51
2.3.3 Comparisons with Other Works 53
2.4 UMC 90nm 4-Channel ICA Processor Tape-out 54
2.4.1 Functional Verification 55
2.4.2 Power Consumption Analysis 56
2.4.3 A FPGA Based-Testbed 59
Chapter 3 Experimental Brain-Heart Monitoring System 63
3.1 Overall System Architecture 63
3.2 The Interface of the Analog Front-End Circuitry 64
3.3 Three Bio-Signal Processors 66
3.3.1 4-Channel ICA Processor 66
3.3.2 Heart-Rate Variability Analysis Processor 68
3.3.3 Near-Infrared Diffuse Optical Tomography Processor 71
3.4 System Control Unit 73
3.5 Front-End Interface Control Unit 74
3.6 Three-Stage Backward Handshaking Mechanism 78
Chapter 4 Conclusion and Future Works 79
4.1 Conclusions 79
4.2 Future Works 81
Reference 82

[1] Malarvili, M.B.; Mesbah, M., “Combining newborn EEG and HRV information for automatic seizure detection,”Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp.4756-4759, 20-25 Aug. 2008
[2] Abdullah, H.; Holland, G.; Cosic, I.; Cvetkovic, D., "Correlation of sleep EEG frequency bands and heart rate variability," Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp.5014-5017, 3-6 Sept. 2009
[3] Fidopiastis, Cali; Hughes, Charles; , “Workshop 1: Use of psychophysiological measures in virtual rehabilitation, ” Virtual Rehabilitation, 2008, pp.xi-xi, 25-27 Aug. 2008
[4] Rankine, L.; Stevenson, N.; Mesbah, M.; Boashash, B., “A Nonstationary Model of Newborn EEG,” Biomedical Engineering, IEEE Transactions on , vol.54, no.1, pp.19-28, Jan. 2007
[5] Ashtiyani, M.; Asadi, S.; Birgani, P.M.; , "ICA-Based EEG Classification Using Fuzzy C-mean Algorithm," 3rd International Conference on Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. , pp.1-5, 7-11 April 2008
[6] R. Vigario, “Extraction of ocular artifacts from EEG using independent component analysis,” Electroencephalogr. Clin. Neurophysiol., vol. 103, pp. 395–404, 1997.
[7] R. Vigario, J. Sarela, V. Jousmaki, M. Hamalainen, and E. Oja, “Independent component approach to the analysis of EEG and MEG recordings,” IEEE Trans. Biomed. Eng., vol. 47, no. 5, pp. 589–593, May 2000.
[8] Hosna Ghandeharion, Abbas Erfanian “A fully automatic ocular artifact suppression from EEG data using higher order statistics: Improved performance by wavelet analysis” Medical Engineering & Physics 32 (2010) 720–729.
[9] Muhammad Tahir Akhtar,Christopher J. James” Focal Artifact Removal from Ongoing EEG – A Hybrid Approach Based on Spatially-Constrained ICA and Wavelet De-noising” 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, September 2-6, 2009.
[10] Boas, D.A.; Brooks, D.H.; Miller, E.L.; DiMarzio, C.A.; Kilmer, M.; Gaudette, R.J.; Quan Zhang; , "Imaging the body with diffuse optical tomography," Signal Processing Magazine, IEEE , vol.18, no.6, pp.57-75, Nov 2001
[11] G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biological Psychiatry, vol. 52, pp. 679-693, 10/1 2002.
[12] A. Siegel, J. J. Marota, and David Boas, "Design and evaluation of a continuous-wave diffuse optical tomography system," Opt. Express 4, 287-298 (1999)
[13] Lin, Yuanqing; Lech, Gwen; Nioka, Shoko; Intes, Xavier; Chance, Britton; , "Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager," Review of Scientific Instruments , vol.73, no.8, pp.3065-3074, Aug 2002
[14] Rajendra Acharya, U., K. Paul Joseph, et al. (2006). "Heart rate variability: a review." Medical and Biological Engineering and Computing 44(12): 1031-1051.
[15] Roche F, Pichot V, Sforza E, Court-Fortune I, Duverney D, Costes F, Garet M, Barthe´ le´my J-C (2003) Predicting sleep apnoea syndrome from heart period: a time-frequency wavelet analysis. Eur Respir J 22:937–942
[16] M. M. Ohayon, "Epidemiology of insomnia: what we know and what we still need to learn," Sleep Medicine Reviews, vol. 6, pp. 97-111, 2002.
[17] Kenneth Revett; Sergio Tenreiro de Magalhães, “Cognitive Biometrics: Challenges for the Future,” Communications in Computer and Information Science, 2010, Volume 92, 79-86
[18] Joseph P. Culver; Bradley L. Schlaggar; Hamid Dehghani; Benjamin W. Zeff; , "Diffuse Optical Tomography for Mapping Human Brain Function," Life Science Systems and Applications Workshop, 2006. IEEE/NLM , pp.1-2, July 2006
[19] A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett., vol. 154, pp. 101–104, 1993.
[20] G. Strangman, D.A. Boas, and J.P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psych., vol. 52, no. 7, pp. 679–693, 2002.
[21] U. Beese, H. Langer, W. Lang, and M. Dinkel, “Comparison of near- infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy,” Stroke, vol. 29, pp. 2032–2037, 1998.
[22] K. Sakatani, S. Chen, W. Lichty, H. Zuo, and Y.P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev., vol. 55, pp. 229–236, 1999.
[23] H. Sato, T. Takeuchi, and K.L. Sakai, “Temporal cortex activation during speech recognition: An optical topography study,” Cognition, vol. 73, pp. B55–B66, 1999.
[24] Y. Hoshi and M. Tamura, “Dynamic multichannel near-infrared optical imaging of human brain activity,” J. Appl. Physiol., vol. 75, pp. 1842–1846, 1993.
[25] E. Watanabe, A. Maki, F. Kawaguchi, Y. Yamashita, H. Koizumi, and Y. Mayanagi, “Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography,” J. Biomed. Opt., vol. 5, pp. 287–290, 2000.
[26] Anthony J. Bell, Terrence J. Sejnowski, ”A Non-linear Information Maximization Algorithm that Performs Blind Separation”
[27] Hong Bo, Tang Qingyu, Yang Fusheng “ICA IN THE SINGLE-TRIAL ESTIMATION AND ANALYSIS OF VEP” Department of Electrical Engineering, Tsinghua University, Beijing 100084
[28] Joseph R. Cavallaro, Franklin T. Luk, CORDIC arithmetic for an SVD processor, Journal of Parallel and Distributed Computing, Volume 5, Issue 3, June 1988, Pages 271-290
[29] 黃煒忠,“四通道即時EEG訊號獨立事件分析之FPGA實現”,國立交通大學,碩士論文,民國九十七年。
[30] EEGLAB - Open Source MATLAB Toolbox for Electrophysiological Research
URL: http://sccn.ucsd.edu/eeglab/
[31] Kuo-Kai Shyu and Ming-Huan Li,” FPGA Implementation of FastICA based on Floating-Point Arithmetic Design for Real-Time Blind Source Separation,” 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006.
[32] Wei-Chung Huang; Shao-Hang Hung; Jen-Feng Chung; Meng-Hsiu Chang; Lan-Da Van; Chin-Teng Lin,”FPGA implementation of 4-channel ICA for on-line EEG signal separation,” Biomedical Circuits and Systems Conference, Page(s):65 – 68,20-22 Nov. 2008
[33] Shmoo Plot – From Wikipedia
URL: http://en.wikipedia.org/wiki/Shmoo_plot
[34] T. Thong, J. McNames, and M. Aboy, "Lomb-Wech periodogram for non-uniform sampling," in Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE, 2004, pp. 271-274
[35] P. E. Trahanias, "An approach to QRS complex detection using mathematical morphology," Biomedical Engineering, IEEE Transactions on, vol. 40, pp. 201-205, 1993.
[36] MIT/BIH – ECG Database
http://ecg.mit.edu/
[37] X. Cheng and D. Boas, “Diffuse optical reflection tomography with continuous-wave illumination,” Med. Biol., vol. 42, pp. 841-854, 1997.
[38] Y-H Hsu; C-C Fu; W-C Fang; T-H Sang, “A VLSI-inspired image reconstruction algorithm for continuous-wave diffuse optical tomography systems,” Life Science Systems and Applications Workshop, 2009. LiSSA 2009. IEEE/NIH , pp.88-91, 9-10 April 2009
[39] Nazareth P. Castellanos, Valeri A. Makarov “Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis” Journal of Neuroscience Methods 158 (2006) 300–312.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 整合於可攜式腦心監護系統之DOT/ECG/EEG多處理器設計
2. 適用於可攜式三通道ECG遠端照護系統晶片之有效的心跳變異率處理器設計
3. 基於總體經驗模態分解演算法的晶片系統設計及其於光電容積描記法訊號處理系統的應用
4. 應用於腦波意念判斷之多通道線上遞迴 獨立成份分析晶片設計
5. 應用於十六通道腦波即時處理系統之高效能奇異值分解處理器與線上遞迴獨立通道成分分析之系統晶片設計與實作
6. 基於希爾伯特-黃轉換之應用於生醫音頻訊號處理系統晶片設計
7. 基於穩態視覺誘發電位之多通道腦機介面電話撥號系統實作
8. 基於總體經驗模態分解之 有效PPG訊號處理系統的實現及驗證
9. 基於低功耗動脈光容積描計法訊號調變與解調變晶片設計之可攜式生理監測系統實作
10. 高效率多通道線上遞迴獨立成份分析晶片設計及其於可攜式即時腦波系統的應用
11. 應用於乳房腫瘤影像之擴散光學斷層掃描三維多層重建演算法系統晶片設計與實現
12. 應用於心臟監護系統之即時偵測心律不整與睡眠呼吸中止症之演算法實現
13. 應用於無線床邊監護系統之高集成度多核生醫信號處理晶片設計與系統實作
14. 適用於可攜式腦心監護系統之高能源效率與高整合8通道前端類比電路
15. 基於遞迴最小平方自適應濾波器演算法的無線式光容積描計訊號之多項生理參數監測系統實作