(44.192.112.123) 您好!臺灣時間:2021/03/06 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:溫岳嘉
研究生(外文):Wun, Yue- Jia
論文名稱:多層堆疊氧化鉿/氧化鋁電阻轉態層之透明電阻式記憶體特性研究
論文名稱(外文):Characterization of Transparent Resistive Random Access Memory Devices Based on HfO2/Al2O3 Multi-layer Stacking as Resistive Switching Film
指導教授:張國明汪大暉
指導教授(外文):Chang, Kow-MingWang, Ta-Hui
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:61
中文關鍵詞:電阻轉態氧化鋁氧化鉿多層堆疊
外文關鍵詞:Resistive SwitchingAi2O3HfO2multilayer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:718
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:166
  • 收藏至我的研究室書目清單書目收藏:0
我們首開先例的運用原子層沉積法沉積出九循環、十九循環以及三十八循環的氧化鉿及氧化鋁多層堆疊式電阻轉態層,並且運用在透明電阻式記憶體上。其中九循環元件展現出最佳的性能,最多的耐久度,最小的平均操作電壓以及最小的操作電壓標準差,相信是因為三十八循環元件內部過於散佈的氧化鋁導致不易生成穩定傳導絲的緣故。
儘管現今透明電阻式記憶體的性能表現尚無法和非透明電阻式記憶體相提並論,相較於近年透明電阻式記憶體的發展,我們的九循環元件在耐久度、平均操作電壓和操作電壓標準差上已經展現出極佳的性能。根據相關研究指出,氧空缺生成能可因加入鋁而降低,如此有助於生成較為穩定的傳導絲來強化電阻轉態的性能。就我們所知,我們首先應用此一原理於透明電阻式記憶體上來控制傳導絲的生成,不但呼應了前人的研究結果,也將透明電阻式記憶體的性能表現推向更高的水平。將此多層堆疊式電阻轉態層應用在透明電阻式記憶體上,使得透明電阻式記憶體有極大的潛力,來成為新世代未來時尚科技電子產品。

We first demonstrate the resistive switching characteristics of Transparent Resistive Random Access Memory Devices (TRRAM) with HfO2/Al2O3 multi-layer stacking via different ALD deposition cycles as resistive switching films for 9-cycle, 19-cycle and 38-cycle devices respectively. The-9-cycle device has the best performance of endurance times, average set operation voltage, standard deviation of set voltage distribution; average reset operation voltage, standard deviation of reset voltage distribution than the other two (19-cycle and 38-cycle) . For the reason that Al2O3 spread out more in resistive switching layers of the 38-cycle device, it is more difficult to form stable conducting filaments.
In addition, our 9-cycle device with endurance times, set/reset operation voltage and standard deviation of reset voltage distribution is relatively excellent compare to recent published transparency memory devices. It was claimed that oxygen vacancy forming energy could be lower down by Al atoms which leads conducting filaments formed more stable in previous non-transparent RRAM. Even though, the performances of TRRAM in this thesis are still not comparable to non-transparent RRAM. To the best of our knowledge, we first apply this mechanism to control the conducting filament formation in TRRAM. Not only echo the previous study of the mechanism but also demonstrate TRRAM with the higher performance. The multi-layer stacking as the resistive switching films in TRRAM shows great potential in the future modern electronics.

Contents
摘 要 i
Abstract ii
致 謝 iv
Contents vi
Table Captions viii
Figure Captions ix
Chapter 1 Introduction 1
1.1 Introduction to Nonvolatile Memory 1
1.2 Introduction to Next-generation Nonvolatile Memory 3
1.2.1 Phase Change Memory 3
1.2.2 Ferroelectric Random Access Memory 4
1.2.3 Magnetroresistive Random Access Memory 5
1.2.4 Resistive Random Access Memory 6
1.2.5 Transparent Resistive Random Access Memory 6
1.3 Introduction to Resistive Random Access Memory 7
1.3.1 Basic Resistive Switching Current-voltage Curves 7
1.3.2 Basic Resistive Switching Device Structure 9
1.3.3 Carrier Conduction Mechanisms 9
1.3.4 Resistive Switching Mechanisms 11
Chapter 2 Experimental Details 13
2.1 Fabrication of Resistive Switching Memory Devices 13
2.1.1 Sample Preparation 13
2.1.2 Atomic Layer Deposition of Resistive Switching Layer 14
2.1.3 Top electrode 15
2.2 Material Analyses 15
2.2.1 X-ray Diffraction (XRD) 15
2.2.2 Transmission Electron Microscopy (TEM) 16
2.2.3 Atomic Force Microscopy (AFM) 16
2.3 Electrical Analyses 16
2.3.1 Current-Voltage Measurement 16
2.3.2 Endurance Measurement 17
2.3.3 Data Retention Time Measurement 17
2.3.4 Nondestructive Readout Measurement 18
Chapter 3 Result and Discussion 19
3.1 Physical Analysis of Multi-layer Resistive Switching Film 19
3.2 Electrical characteristics of resistive switching layer 29
3.3.1 Electrical Property 31
3.3.2 Resistive Switching Localization Test 33
3.3.3 Retention Time Property 34
3.3.4 Nondestructive Readout Property 35
3.4 Conduction Mechanism of Resistive Switching Layer 47
Chapter 4 Conclusion 54
Chapter 5 Future Work 56


Reference:
[1] W. W. Zhuang, W. Pen, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S.T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y.Wang, S. Q. Liu, N.J. Wu, and A. Ignatiev,” Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM Tech. Dig., 2002, pp.193-196.
[2] K. Kim, J. H. Choi, and H.-S. Jeong,“ the future prospect of nonvolatile memory,” in Proc. VLSI-TSA-Tech., pp.88-94, 2005.
[3] N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira,” Rapid-phase transitions of GeTe-Sb, Te, pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys., Vol. 69, No. 5,1 March 1991.
[4] Stefan Lai (Intel) and Tyler Lowrey (Ovonyx),“ OUM - a - 180 nm Nonvolatile Memory Cell Element Technology For Stand Alone and Embedded Application,” in IEDM Tech. Dig. 2001, pp. 803-806.
[5] Takashi Nakamura, Yoshikazu Fujimori, Naoki Izumi and Akira Kamisawa,” Fabrication Technology of Ferroelectric Memories,” Jpn. J. Appl. Phys. 37, pp. 1325-1327, 1998.
[6] R. Moazzami,” Ferroelectric thin film technology for semiconductor memory,” Semicond. Sci. Technol. 10, 375, 1995.
[7] J. Slaughter et al. ,” High Speed Toggle MRAM with MgO-Based Tunnel Junctions,” In IEDM Tech. Dig., Washington, D.C., 2005.
[8] S. Tehrani et al.,“ Magnetoresistive Random Access Memory Using Magnetic Tunnel Junctions,” Proc. IEEE, 91(5), 2003.
[9] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot,“ Redox-Based Resistive Switching Memories –Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater., 21, 2632–2663, 2009.
[10] Jung Won Seo,a_ Jae-Woo Park,b_ Keong Su Lim,c_ Ji-Hwan Yang, and Sang Jung Kang,” Transparent resistive random access memory and its characteristics for nonvolatile resistive switching,” Applied Physics Letters, 93, 223505, 2008.
[11] H. Y. Lee, P. S. Chen, C. C. Wang, S. Maikap, P. J. Tzeng, C. H. Lin, L. S. Lee, and M. J. Tsai,“ Low power switching of nonvolatile resistive memory usinghafnium oxide,” Jpn. J. Appl. Phys., vol. 46, no. 4B, pp. 2175–2179, 2007.
[12] D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser,“ Characteristic electroforming behavior in Pt /TiO2 /Pt resistive switching cells depending on atmosphere,” J. Appl.Phys., vol. 104, no. 12, pp. 123-716, Dec. 2008.
[13] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi,“ Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous / inhomogeneous transition of current distribution,” Phys. Rev. B, 77, 035105, Jan. 2008.
[14] A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi,“ Non-volatile resistive switching for advanced memory applications,” in IEDM Tech. Dig., 2005, pp. 746-749.
[15] Kyung Min Kim, Byung Joon Choi, Doo Seok Jeong, Cheol Seong Hwang, and Seungwu Han, “ Influence of carrier injection on resistive switching of TiO2 thin films with Pt electrodes,” Appl. Phys. Lett. 89, 162912, 2006.
[16] Chih-Yang Lin, Chen-Yu Wu, Chung-Yi Wu, Tzyh-Cheang Lee, Fu-Liang Yang, Chenming Hu, Fellow, IEEE, and Tseung-Yuen Tseng, Fellow, IEEE,” Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices,” IEEE Electron Device Letters, VOL. 28, NO. 5, May 2007.
[17] Chih-Yang Lin, Chung-Yi Wu, Chen-Yu Wu, and Tseung-Yuen Tseng, ” Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode,” JOURNAL OF APPLIED PHYSICS, 102, 094101, 2007.
[18] Chih-Yang Lin,a Chen-Yu Wu,a Chung-Yi Wu,a Chenming Hu,b and Tseung-Yuen Tseng, ” Bistable Resistive Switching in Al2O3 Memory Thin Films,” Journal of The Electrochemical Society, 154 (9) G189-G192, 2007.
[19] S. M. Sze, Physics of semiconductor Devices, 2nd ed. New York: John Wiley & Sons, pp.402-407, 1981.
[20] Kyung Min Kim, Byung Joon Choi, Yong Cheol Shin, Seol Choi, and Cheol Seong Hwang , ”Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films,” Appl. Phys. Lett. 91, 012907, 2007.
[21] R.E. Thurstans, et al. “The electroformed metal-insulator-metal structure: a comprehensive model,” J. Phys., D 35 802, 2002.
[22] R.D. Gould, M.G. Lopez,“ Electrical conductivity and dynamics of electroforming in Al---SiOx---Al thin film sandwich structures,” Thin Solid Films 433, pp. 315-320, 2003.
[23] R. Blessing, H. Pagnia, N. Stonik,” The electroforming process in MIM diodes,” Thin Solid Films 85, pp. 119-128, 1981.
[24] C. Rohde, et al.“ Identification of a determining parameter for resistive switching of TiO2 thin films,” Appl. Phys Lett. 86, 262907, 2005.
[25] X. CaO et al.“ Effects of the compliance current on the resistive switching behavior of TiO2 thin films,” Appl. Phy. A 97, 883-887, 2009.
[26] Kim et al.“ Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phy. Lett. 88, 202102, 2006.
[27] J.H. Hsu et al. Vac. Sci. Technol. B 21, 2599, 2003.
[28] Kyung Min Kim, Byung Joon Choi, Seul Ji Song, Gun Hwan Kim, and Cheol Seong Hwang ,” Filamentary Resistive Switching Localized at Cathode Interface in NiO Thin Films,” Journal of The Electrochemical Society, 156 (12) G213-G216, 2009.
[29] X. F. Wang, Quan Li, and M. S. Moreno,” Effect of Al and Y incorporation on the structure of HfO2,” JOURNAL OF APPLIED PHYSICS 104, 093529, 2008.
[30] Kyung Min Kim, Byung Joon Choi, Bon Wook Koo, Seol Choi, Doo Seok Jeong, and Cheol Seong Hwang,“ Resistive Switching in Pt/Al2O3/TiO2/Ru Stacked Structures,” Electrochemical and Solid-State Letters, 9 (12) G343-G346, 2006.
[31] Shimeng Yu, Bin Gao, Haibo Dai, Bing Sun, Lifeng Liu,a Xiaoyan Liu, Ruqi Han, Jinfeng Kang, and Bin Yu,” Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers,” Electrochemical and Solid-State Letters, 13 (2) H36-H38, 2010.
[32] Haowei Zhang, Bin Gao, Shimeng Yu, Lin Lai, Lang Zeng, Bing Sun, Lifeng Liu, Xiaoyan Liu, Jing Lu, Ruqi Han, Jinfeng Kang,” Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2: A First Principles Study,” IEEE, 345 E 47TH ST, pp.155-158, Sep. 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔