(18.210.12.229) 您好!臺灣時間:2021/02/26 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳國永
研究生(外文):Chen, Kuo-Yung
論文名稱:電偶極工程與高介電係數阻絕層於氮化矽與奈米微晶粒非揮發性記憶體之研究
論文名稱(外文):A Study of the Impact of Dipole Engineering and High-k Blocking Layer on Nonvolatile Memories with Nitride and Nanocrystal Trapping Layer
指導教授:簡昭欣
指導教授(外文):Chien, Chao-Hsin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:88
中文關鍵詞:非揮發性記憶體微晶粒電偶極
外文關鍵詞:nonvolatile memorynonocrystalsdipole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們先利用多晶矽-氧化矽-氮化矽-氧化矽-單晶矽型式(SONOS-type)的電容平帶電壓變化,探討氧化鋁(Al2O3)與二氧化鉿(HfO2)在二氧化矽(SiO2)的接面上產生的”本質電偶極”(intrinsic dipole)。我們發現當氧化鋁或二氧化鉿沉積在二氧化矽上會使電容的平帶電壓變大,反之若是二氧化矽沉積在氧化鋁或二氧化鉿會使其平帶電壓變小。我們也發現氧化鋁產生的本質電偶極大約是二氧化鉿的兩倍。接下來將這個結果運用在二氧化鉿的奈米結晶粒的非揮發性快閃記憶體元件,發現元件的電容平帶帶壓變化有相同的結果,但由於此次實驗元件有很嚴重的閘極注入電子,使元件在福勒-諾德漢穿隧(Fowler Nordheim tunneling)抹除操作時無法正常運作,但接下來的實驗中我們將解決此問題。
再者,我們利用了高介電係數材料(Al2O3,HfAlOx)取代二氧化矽當作阻絕氧化層運用在奈米微晶粒(nanocrystal)的非揮發性的快閃記憶體元件,經過測試我們發現這層高介電常數材料並不會因會我們的離子佈值後退火產生嚴重的劣化。我們驗證介電係數越高的阻絕氧化層材料記憶體操作速度亦越快,但由於此高介電係數材料中的缺陷,使我們在抹除操作時有暫態的現象。此元件擁有很快的寫入速度(programmin speed),同時也有很高的資料保持度(retention),在經過一萬次的寫入抹除操作下(endurance)依然可以維持很好的記憶體效果。
最後,我們結合了之前的分析,將本質電偶極(Al2O3, HfO2)沉積在穿隧氧化層上,且運用高介電係數材料(Al2O3)的阻絕氧化層,做出多晶矽-氧化鋁-氮化矽-氧化矽-單晶矽型式的非揮發性記憶體元件。我們發現元件的臨界電壓會因電偶層存在而變大。我們分別利用福勒-諾德漢穿隧(Fowler Nordheim tunneling)與熱載子注入(hot carrier injection)兩種操作方式探討此電偶層對於元件的寫入與抹除的情況,並且探討其資料保(retention)度與元件的容忍度(endurance)和擾亂程度(disturbance)的影響。

In this thesis, we first study the influence of the presence of “intrinsic dipole” on the electrical properties of a SONOS-type nonvolatile memory (NVM) by a capacitor structure. The magnitudes of “intrinsic dipole” were extracted by the VFB shift observed in the C-V curves of the capacitors with adding Al2O3 or HfO2 inside the standard gate stack structure of a SONOS-type NVM, i.e., SiO2/Si3N4/SiO2. We found that VFB shifted toward positive direction when Al2O3 or HfO2 were deposited on top of SiO2 (tunneling layer). In contrast, VFB shifted toward negative direction when Al2O3 or HfO2 was deposited on top of Si3N4 (blocking layer). In addition, the magnitude of VFB shift for Al2O3 was about twice larger than HfO2. Next we also applied this scheme to the HfO2 nanocrystal SONOS-type NVM, and found that the tendency of VFB shift in the HfO2 nanocrystal NVM was the same with the conventional SONOS NVM. However, there was a serious gate injection problem in our device, so the fabricated devices can not be normally erased by FN-tunneling. We would tackle this problem in later chapters.
Then, we adopted the high-k material (Al2O3, HfAlOx) to replace the traditional SiO2 as blocking layer for the HfO2 nanocrystal NVM. With high thermal budget processing for device fabrication, the high-k materials sustained pretty well and did not depict visible degradation. We exhibited the HfAlOx as blocking layer having faster programming and erasing speed. However, there were plentiful defects in the HfAlOx layer, and this made our device have “transient phenomenon” during erase operation. For our nanocrystal memory devices, there were advantages of fast programming speed, excellent data retention time at room temperature, and superior endurance after P/E cycles of 104.
Finally, we adopted the intrinsic dipole scheme, i.e., depositing additional Al2O3 and HfO2 on top of tunneling oxide and used Al2O3 as blocking layer to make the so called SANOS-type NVM. The presence of dipole reflected on the observed larger device threshold voltage than the conventional one. Here we use both the FN-tunneling and hot carrier injection to study the electrical characteristics of the fabricated devices. We found that FN-tunneling operation has led to better endurance than hot carrier injection operation. Moreover, we also discussed the impact of dipole engineering on the retention and disturbance characteristics of our newly-developed nonvolatile memories.

Chapter 1 Introduction 1
1.1 Overview of Nonvolatile Memory 1
1.2 Motivation 5
1.3 Organization of the Thesis 6
Reference 7

Chapter 2 Effect of Interfacial Dipole on SONOS-type Memory Capacitors and Nanocrystals Memory Devices 15
2.1 Introduction 15
2.2 Experiment 16
2.3 Results and Discussion 17
2.3.1 Effect of Interfacial Dipole on SONOS-type Capacitor
17
2.3.2 Effect of Interfacial Dipole on Nanocrystal Memory Device 19
2.4 Summary 19
Reference 20


Chapter 3 Characteristic of HfO2 Nanocrystals Nonvolatile Flash Memory with High-k Blocking Layer 39
3.1 Introduction 39
3.2 Experiment 40
3.3 Results and Discussion 40
3.3.1 Material Analysis of Al2O3 and HfAlOx Blocking Layer
40
3.3.2 Characteristics of Program/Erase Operation 42
3.3.3 Transient Phenomenon of Erasing Operation 42
3.3.4 Data Retention 43
3.3.5 Endurance 44
3.4 Summary 44
Reference 45

Chapter 4 SANOS Nonvolatile Memory Devices with Dipole Layer Engineering 64
4.1 Introduction 64
4.2Experiment 64
4.3 Results and Discussion 65
4.3.1 Characteristics of Program/Erase Operation 65
4.3.2 Retention 67
4.3.3 Endurance 68
4.3.4 Disturbance 68
4.4 Summary 69
Reference 70

Chapter 5 Conclusions and Further Recommendations ....………………………………86
5.1 Conclusions ………………………………………………….……………….……..86
5.2 Further Recommendations ………………………………………………….………87

Vtia ……………………………………………………………………………….….………88


[1.1] G. A. Prin, “Magnetoelectronics.” In Science, 1998, vol 282, pp. 1660-1663.
[1.2] S. Lai, T. Lowrey, “OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International, 2001 ,pp. 36.5.1 - 36.5.4
[1.3] A. Fazio, “A high density high performance 180 nm generation EtoxTM flash memory technology,” in Electron Devices Meeting, 1999. IEDM Technical Digest. International, 1999, pp.158-166
[1.4] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Formmer, and D. Finzi, “NROM : A novel Localized Trapping, 2-Bot Nonvolatile Memory cell,” in IEEE Electron Device Letters, Vol.21, No11,November 2000
[1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” Circuits and Devices Magazine, IEEE, Vol. 16, pp22-31, 2000
[1.6] R. Muralidhar, R. F. Steimle, M. Sadd, R. Rao, C. T. Swift, E. J. Prinz, J. Yater, L. Grieve, K. Harber, B. Hradsky, S. Straub, B. Acred, W. Paulson, W. Chen, L. Parker, S. G. H. Anderson, M. Rossow, T. Merchant, M. Paransky, T. Huynh, D. Hadad, K. M. Chang, B. E. White, and Jr. ,“A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory ,“ in Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International, 2003, pp. 26.2.1-26.2.4
[1.7] J. D. Lee, S. H. Hur, and J. D. Choi, “Effects of floating gate interferences on NAND Flash memory cell operation,” IEEE Electron Device Lett., vol. 23, no. 5, 2002, pp. 264–266,
[1.8] R. Moazzami, and H. Chenming ‘Stress-induced current in thin silicon dioxide films;. in Electron Devices Meeting, 1992. Technical Digest., International. 1992, pp.139-142
[1.9] K. Kim; “Technology for sub-50nm DRAM and NAND flash manufacturing.” in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp 323-326
[1.10] H. T. Lue, S. Y. Wang, E. K. Lai, Y. H. Shih, S. C. Lai, L. W. Yang, K. C. Chen, J. Ku, K. Y. Hsieh, R. Liu, and C. Y. Lu, “BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability” in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp 547-550
[1.11] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T.H. Ng, and B.J. Cho, “High-K HfAlO charge trapping in SONOS-type nonvolatile memory device for high speed operation, “ in IEDM Tech. Dig, 2004, pp. 889-892.
[1.12] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C .Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage,” in Electron Devices Meeting, 1995., International, 1995, pp. 521-524.
[1.13] W. K. Choi, W. K. Chim, C. L. Heng, L. W. Teo, V. Ho, V. Ng, D. A. Antoniadis, and E. A. Fitzgerald, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure,” Applied Physics Letters, vol. 80, pp. 2014-2016, 2002.
[1.14] Y. H. Lin, C. H. Chien, C. T. Lin, C. W. Chen, C. Y. Chang, and T. F. Lei, “High performance multi-bit nonvolatile HfO2 nanocrystal memory using spinodal phase separation of hafnium silicate,” in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004, pp1080-1082
[1.15] S. C. Lai, H. T. Lue, M. J. Yang, J. Y. Hsieh, S. Y. Wang, T. B. Wu, G. L. Luo, C. H. Chien, E. K. Lai, K. Y. Hsieh, R. Liu, and C. Y. Lu, “MA BE-SONOS: A Bandgap Engineered SONOS using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation,” in Non-Volatile Semiconductor Memory Workshop, 2007 22nd IEEE, 2007, p88-89
[1.16] W. J. Tsai, S. H. Gu, N. K. Zous, C. C. Yeh, Liu, C. H. Chen, T. Wang, S. Pan, and C, Y, Lu, “Cause of data retention loss in a nitride-based localized trapping storage flash memory cell,” in Reliability Physics Symposium Proceedings, 2002. 40th Annual, 2002, pp34-38
[1.17] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories,” in Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International , 2003, pp 26.5.1 - 26.5.4
[1.18] G. Verma, and N. Mielke, “Reliability performance of ETOX based flash memories,” in Reliability Physics Symposium 1988. 26th Annual Proceedings., International , 1988, pp. 158-166

[2.1] M. V. Duuren, N. Akil, M. Boutchich, and D.S. Golubovic,”New writing mechanism for reliable SONOS embedded memories with thick tunnel oxide,” in Integrated Circuit Design and Technology and Tutorial, 2008. ICICDT 2008. IEEE International Conference on, 2008, pp.181-184
[2.2] S. Y. Wang, H. T. Lue, P. Y. Du, C. W. Liao, E. K. Lai, S. C. Lai, L. W. Yang; T. Yang. K. C. Chen, J. Gong, K. Y. Hsieh, R. Liu, and C. Y. Lu, “Reliability and Processing Effects of Bandgap-Engineered SONOS (BE-SONOS) Flash Memory and Study of the Gate-Stack Scaling Capability,” in Device and Materials Reliability, IEEE Transactions, 2008, pp. 416-425
[2.3] T. M. Pan, and W. W. Yeh, “High-Performance High- k Y2O3 SONOS-Type Flash Memory,” in Electron Devices, IEEE Transactions, 2008,pp. 2354-2360
[2.4] Y. Tateshita, J. Wang, K. Nagano, T. Hirano, Y. Miyanami, T. Ikuta, T. Kataoka, Y. Kikuchi, S. Yamaguchi, T. Ando, K. Tai, R. Matsumoto, S. Fujita, C. Yamane, R. Yamamoto, S. Kanda, K. Kugimiya, T. Kimura, T. Ohchi, Y. Yamamoto, Y. Nagahama, Y. Hagimoto, H. Wakabayashi, Y. Tagawa, M. Tsukamoto, H. Iwamoto, M. Saito, S. Kadomura, and N. Nagashima, “High-Performance and Low-Power CMOS Device Technologies Featuring Metal/High-k Gate Stacks with Uniaxial Strained Silicon Channels on (100) and (110) Substrates,” in Electron Devices Meeting, 2006. IEDM '06. International, 2006, pp. 1-4
[2.5] Y. C. Yeo, Q. Lu, H. Ranade Takeuchi, K.J. Yang, I. Polishchuk, T. J. King, C. Hu, S.C. Song, H.F. Luan, and D. L. Kwong, “Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric,” in Electron Device Letters, IEEE, 2001,pp. 227-229
[2.6] I. Polishchuk, P. Ranade, T. J. King, and C. Hu;, “Dual work function metal gate CMOS technology using metal interdiffusion,” in Electron Device Letters, IEEE, 2001, pp.444-446
[2.7] Q. Lu; R. Lin, P. Ranade, and T. J. King, Chenming Hu;” Metal gate work function adjustment for future CMOS technology,” in VLSI Technology, 2001. Digest of Technical Papers. 2001 Symposium , 2001,pp45-46
[2.8] Y. Kamimuta, K. Iwamoto, Y. Nunoshige, A. Hirano, W. Mizubayashi, Y. Watanabe, S. Migita, A. Ogawa, H. Ota, T. Nabatame, and A. Toriumi,” Comprehensive Study of VFB Shift in High-k CMOS - Dipole Formation, Fermi-level Pinning and Oxygen Vacancy Effect,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp.341-344
[2.9] S. Kubicek, T. Schram, V. Paraschiv, R. Vos, M. Demand, C. Adelmann, T. Witters, L. Nyns, L. A. Ragnarsson, H. Yu, A. Veloso, R. Singanamalla, T. Kauerauf, E. Rohr, S. Brus, C. Vrancken, V. S. Chang, R. Mitsuhashi, A. Akheyar, H. J. Cho, J. C. Hooker, B. J. O'Sullivan, T. Chiarella, C. Kerner, A. Delabie, S. Van Elshocht, K. De Meyer. S. De Gendt, P. Absil, T. Hoffmann, and S. Biesemans, ” Low VT CMOS using doped Hf-based oxides, TaC-based Metals and Laser-only Anneal,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp.49-52
[2.10] K. Iwamoto, H. Ito, Y. Kamimuta, Y. Watanabe, W. Mizubayashi, S. Migita, Y. Morita, M. Takahashi, H. Ota, T. Nabatame, and A. Toriumi, ” Re-examination of Fat-Band Voltage Shift for High-k MOS Devices,” in VLSI Technology, 2007 IEEE Symposium, 2007, pp. 70-71
[2.11] P. D. Kirsch, P. Sivasubramani, J. Huang, C. D. Young, M. A. Quevedo-Lopez, H. C. Wen, H. Alshareef, K. Choi, C.S. Park, K. Freeman, M. M. Hussain, G.; Bersuker, H. R. Harris, P. Majhi, R. Choi, P. Lysaght, B. H. Lee, H. H. Tseng, R. Jammy, T. S. Boscke, D. J. Lichtenwalner, J. S. Jur, and A. I. Kingon, ” Dipole model explaining high-k/metal gate field effect transistor threshold voltage tuning,” in Applied Physics Letters, 2008, pp. 092901 - 092901-3
[2.12] K. Kita, and A. Toriumi,” Intrinsic origin of electric dipoles formed at high-k/SiO2 interface,” in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp.1-4
[2.13] X. Wang, K. Han, W. Wang, S. Chen, X. Ma, D. Chen, J. Zhang, J. Du, Y. Xiong, and A. Huang, “Physical origin of dipole formation at high-k/SiO2 interface in metal-oxide-semiconductor device with high-k/metal gate structure,” in Applied Physics Letters, 2010, pp.152907 - 152907-3

[3.1] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, ” Nonvolatile Si quantum memory with self-aligned doubly-stacked dots,” in Electron Devices, IEEE Transactions, 2002, pp.1392 - 1398
[3.2]T. Baron, B. Pellisser, L. Pernipla, F.Mazen, J. M. Hartmann and G. Polland, “Chemical vapor deposition GE nanocrytstals on SiO2,” in Applied Physics Letters, 2003, vol.83, pp. 1444-1446
[3.3] Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, “ Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3 gate dielectric,” in Applied Physics Letters, 2003 , pp.4708 – 4710
[3.4] C. Lee; A. Gorur-Seetharam, and E.C. Kan, ” Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single- and double-layer metal nanocrystals,” in Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International, 2003, pp. 22.6.1 - 22.6.4
[3.5] J. Bu and M. H. White, Solid-State Electron.” Design considerations in scaled SONOS nonvolatile memory devices,” in Solid-State Electron.2001, vol 45, pp. 113
[3.6] F. R. Libsch and M. H. White,” Charge transport and storage of low programming voltage SONOS/MONOS memory devices,” in Solid-State Electron.1990, vol. 33, pp. 105-126
[3.7] S. Choi, M. Cho, and H. Hwang,” Improved metal–oxide–nitride–oxide–silicon-type flash device with high-k dielectrics for blocking layer,” in JOURNAL OF APPLIED PHYSICS, 94, 5408 (2003); doi:10.1063/1.1609650 (3 pages)
[3.8] G. Molas, M. Bocquet, J.; Buckley, J.P. Colonna, L. Masarotto, H. Grampeix, F. Martin, V. Vidal, A. Toffoli, P. Brianceau, L. Vermande, P. Scheiblin, M. Gely, A.M. Papon, G. Auvert, L. Perniola, C. Licitra, T. Veyron, N. Rochat, C. Bongiorno, S. Lombardo, B. De Salvo, and S. Deleonibus,“Thorough investigation of Si-nanocrystal memories with high-k interpoly dielectrics for sub-45nm node Flash NAND applications,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International 2007, pp. 453 – 456

[4.1] W. Arden, “Future semiconductor material requirements and innovations as projected in the ITRS 2005 roadmap,” Materials Science and Enguneering: B, vol. 134 pp. 104-108, 2006.
[4.2] Y. N. Tan, H. C. Wen, C. Park, D. C. Gilmer, C.D. Young, .D. Heh, P. Sivasubramani, J. Huang, P. Majhi, P.D. Kirsch, B.H. Lee, H.H. Tseng, and R. Jammy, ” Tunnel Oxide Dipole Engineering in TANOS Flash Memory for Fast Programming with Good Retention and Endurance ,” in VLSI Technology, Systems and Applications, 2008. VLSI-TSA 2008. International Symposium, 2008, pp. 54 – 55

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 湯智君:〈尚賢.尚同:墨子政治思想研究〉,《聯合學報》第23期(2003年7月)。
2. 湯智君:〈墨家義利相容論〉,《聯合學報》第22期(2003年5月)。
3. 吳進安:〈中國哲學中的自然與人文兩重結構理論探析-以墨子「天志」理論為例〉,《文理通識學術論壇》第3期(2000年1月)。
4. 湯智君:〈先秦墨子喪葬思想初探〉,《興大中文學報》第16期(2004年6月)。
5. 湯智君:〈墨家和平思想探微〉,《臺北科技大學學報》第36之2期(2003年9月)。
6. 鄭基良:〈墨子生死學研究〉,《空大人文學報》第8期(1999年6月)。
7. 吳進安:〈墨子政治哲學的政道與治術〉,《哲學與文化》第26卷第11期(1999年11月)。
8. 張希宇、張幼林:〈論墨子戰爭觀、軍事防禦思想及對古代軍事科技的貢獻〉,《中國國學》第26期(1998年11月)。
9. 易憲容:〈墨子價值哲學及現代意蘊〉,《哲學與文化》第29卷第7期(2002年7月)。
10. 吳豐年:〈墨子兼愛非攻學說之研究〉,《嶺東學報》第13期(2002年5月)。
11. 蕭宏恩:〈墨家的靈性關懷與醫療照護的倫理實踐〉,《哲學與文化》第36卷第2期(2009年2月)。
12. 吳進安:〈墨子簡樸生活之哲理及對當代社會之意義〉,《哲學與文化》第24卷第10期(1997年10月)。
13. 湯智君:〈非攻與義戰:先秦墨家軍事戰術探論〉,《聯大學報》第4卷第1期(2007年6月)。
14. 湯智君:〈從《墨子.非儒》探析墨家和儒家論辯的焦點議題〉,《聯大學報》第6卷第2期(2009年12月)。
15. 金基柱:〈墨子的理想社會與其政治的實踐〉,《中國文化月刊》第232期(1999年7月)。
 
系統版面圖檔 系統版面圖檔