跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳育祥
研究生(外文):Chen, Yu-Hsiang
論文名稱:一個適用於多頻帶快速鎖定的突發式時脈與資料回復電路
論文名稱(外文):A Multi-Band Burst-Mode Clock and Data Recovery Circuit
指導教授:陳巍仁陳巍仁引用關係
指導教授(外文):Chen, Wei-Zen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:頻率檢知器電路突發式寬範圍多模數除頻器電流式數位類比轉換器和差調變器閘式壓控振盪器
外文關鍵詞:Burst-ModeClock and Data RecoveryDelta-Sigma ModulatorModulus DividerCurrent Steering DACFrequency Locked Detector
相關次數:
  • 被引用被引用:6
  • 點閱點閱:364
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
積體電路技術的快速進步早已經鞭策著低價又便宜的寬頻存取服務的發展,對於發展經濟型高速的光纖用戶網路來說,以被動光纖網路為基礎的光纖到家系統被認為是前景一片看好的。在被動光纖網路中,時脈與資料回復電路(CDR)在收發機裡扮演一個非常重要的角色,且此種收發機可以應用在許多的通訊系統裡,比如光纖通訊和平面顯示器介面等。因此,在此應用中,如何實現一個具有快速鎖定的脈衝式時脈與資料回復電路是一個關鍵性的課題。此外,如何利用較便宜的互補式金屬氧化半導體製程來實現高速的時脈與資料回復電路將是可以用相對較低的成本而達到更高傳輸頻寬的不二法門。
在通訊系統中,通常接收端接受到的資料都是非同步的,並且受到了雜訊干擾使得資料失真,所以在接收端中的時脈與資料回復電路必須從資料中萃取出時脈的資訊,並利用此資訊將輸入的資料作重新萃取的動作,以便減少錯誤率。除此之外,為了使傳輸的效益更大,在Gigabit PON (GPON)的系統中要求CDR能夠快速的鎖定,而由於本設計的時脈與資料回復電路主要達到快速鎖定為目的,因此快速鎖定為本晶片設計的重點之一。
本電路設計主要實現一個閘式壓控振盪器為基準的突發式時脈與資料回復電路,利用數位鎖頻迴路去鎖定閘式壓控振盪器頻率,再交給閘式壓控振盪器電路進行快速相位的重置,和資料與相位的鎖定,此電路所提出的閘式壓控振盪器採1/7速率的操作,也就是在一個時脈週期之內有七筆傳送資料,進而達到高速操作及低功率消耗之目的,且利用多模數的除頻器使此電路可以應用在不同頻帶,資料傳送方式為序列資料輸入晶片解多工成七筆並列資料輸出,此電路採用TSMC-90nm CMOS製程技術,操作電壓為1.2V,總面積為1.162 x 1.205mm2,當資料頻率為622.16Mbps、1244 Mbps、2488 Mbps、4977 Mbps和7Gbps時,總功率消耗分別為1.5毫瓦、3毫瓦、6毫瓦、12毫瓦和17毫瓦。

The rapid progress in integrated circuit (IC) techniques has spurred the development of low-cost and convenient broadband access services.
Fiber-to-the-home (FTTH) system based on passive optical network (PON) is considered as a promising technology for deploying economically high-speed subscriber networks. In the passive optical network, clock and data recovery (CDR) circuit plays an important role in the transceiver. The application of the communication system such as passive optical network (PON) and FPD-Link suits this transceiver. Thus, how to realize a burst-mode CDR with rapid lock time is a critical issue in this application. Besides, implementing the high speed CDR in an inexpensive CMOS technology is the key to enable higher bandwidth communications at a relatively lower cost.
For communications, the data at the receiver is usually asynchronous, and it suffered distortion by noise and jitter. A clock and data recovery circuit at the receiver senses the data and produces a periodic clock, and retimes the input data by using the produced periodic clock to reduce the bit error rate. For higher efficiency of transmission, Gigabit PON specifications have only constraints on lock time, and this design exhibits instantaneous response.
A gated voltage-controlled oscillator based burst mode clock and data recovery circuit is presented. The frequency of gated voltage-controlled oscillator is locked by using the digitally assisted frequency locked loop, and then the gated voltage-controlled oscillator takes over to achieve instantaneous phase re-align and the received data with clock synchronization. The 1/7-rate gated voltage-controlled oscillator is presented. There are seven transmitted data within a periodic clock in order to achieve high speed operation and low power consumption. It can cover multi-band by using the truly modulus programmable divider, and the type of the data transmission is serial in parallel out. Implemented in a 90nm CMOS technology, the area is 1.162x1.205 mm2 including PAD, The chip consumes 1.5 mW, 3 mW, 6 mW, 12 mW and 17 mW when the data rate are 622.16Mbps, 1244Mbps, 2488Mbps, 4977Mbps and 7Gbps from 1.2V supply.

摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 簡介 1
1.1 相關背景與動機 1
1.2 被動光纖網路簡介 2
1.3 規格 5
1.3.1 資料速率 5
1.3.2 鎖定時間 6
1.3.3 抖動特性 7
1.3.4 上傳傳輸的眼圖遮罩 7
1.4 時脈資料回復電路目標規格 8
1.5 組織架構 9
第二章 突發式時脈與資料回復電路種類 10
2.1鎖相迴路突發式時脈與資料回復電路 10
2.2超取樣式時脈與資料回復電路 15
2.3閘式壓控振盪器突發式時脈與資料回復電路 18
2.4比較 20
2.4.1資料速率和鎖定時間 21
2.4.2 功率和面積 23
2.4.3 抖動特性 24
2.5 總結 29
第三章 一個多頻帶突發式時脈資料回復電路 31
3.1 系統架構 31
3.2 來自閘式壓控振盪器訊號自身的干擾 33
3.2.1 訊號自身的干擾 (ISI Inter-Symbol Interference) 33
3.2.2 閘式壓控振盪器的結構 34
3.3 提出的閘式壓控振盪器 36
3.3.1 結構 36
3.3.2 操作 37
3.4 並行同步輸出解多工電路 40
3.5 頻率檢知器之原理和設計 41
3.6 十六位元上、下數計數器 43
3.7 電流式數位類比轉換器 45
3.8 和差調變器 48
3.9 多模數除頻器 49
3.10 電路設計與模擬結果 51
3.10.1 數位控制振盪器 51
3.10.2 數位校正鎖頻迴路 57
3.10.3 閘式壓控振盪器突發式時脈與資料回復電路 59
3.10.4 閘式數位控制振盪器頻率容忍度分析 62
第四章 佈局與量測結果 66
4.1 晶片佈局(Chip Layout) 67
4.2 量測環境(Measurement Setup) 68
4.3 量測結果(Measurement Results) 69
第五章 結論 78
[1] Hitoyuki Tagami, et al., “A Burst-Mode Bit Synchronization IC with Large Tolerance for Pulse-Width Distortion for Gigabit Ethernet PON,” IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2555–2565, Nov. 2006.
[2] Ethernet in the First Mile Task Force, IEEE 802.3ah, IEEE Standards Association.
[3] Jri Lee and Mingchung Liu, “A 20Gb/s Burst-Mode CDR Circuit Using Injection-Locking Technique,” IEEE ISSCC Digest of Technical Papers, pp. 46-47, Feb., 2007.
[4] Lan-Chou Cho, Chihun Lee and Shan-Iuan Liu, “A 33.6-to-33.8Gb/s Burst-Mode CDR in 90nm CMOS,” IEEE ISSCC Digest of Technical Papers, pp. 48-49, Feb., 2007.
[5] Jri Lee and Behzad Razavi, “A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 38 , no. 12 , pp. 2181-2188 , Dec. 2003.
[6] J. Savoj and Behzad Razavi, “A 10 Gb/s CMOS clock and data recovery circuit with a half-rate binary phase/frequency detector,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, p. 13, Jan. 2003.
[7] R.-J. Yang, S.-P. Chen, and S.-I. Liu, “A 3.125 Gb/s clock and data recovery circuit for the 10 Gbase-LX4 Ethernet,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, p. 1356, Aug. 2004.
[8] A. Rezayee and K. Martin, “A 9-16 Gb/s clock and data recovery circuit with three-state phase detector and dual-path loop architecture,” in Proc. 29th Europe Solid-State Circuits Conf. (ESSCIRC), Sep. 2003, pp. 683–686.
[9] E. Nosaka, H. Sano, K. Ishii, M. Ida, K. Kurishima, S. Yamahata, T. Shibata, H. Fukuyama, M. Yoneyama, T. Enoki, and M. Muraguchi, “A 39-to-45 Gb/s multi-data-rate clock and data recovery circuit with a robust lock detector,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1361–1365, Aug. 2004.
[10] S. Jonathan E. Rogers, and John R. Long, “A 10Gb/s CDR/DEMUX with LC Delay Line VCO in 0.18μm CMOS,” IEEE ISSCC Digest of Technical Papers, pp. 254-255, 2002.
[11] M. Meghelli et al., “SiGe BiCMOS 3.3-V Clock and Data Recovery Circuits for 10-Gb/s Serial Transmission System,” IEEE Journal of Solid-State Circuits, vol.35, No. 12, pp. 1992-1995, Dec. 2000.
[12] Y. M. Greshishchev et al., “SiGe Clock and Data Recovery IC with Linear-Type PLL for 10-Gb/s SONET Application,” IEEE Journal of Solid-State Circuits, vol.35, No. 9, pp. 1353-1359, September 2000.
[13] S. G. Georgiou, Y. Baeyens et al., “Clock and Data Recovery IC for 40-Gb/s Fiber-Optical Receiver,” IEEE Journal of Solid-State Circuits, vol.37, No. 9, pp. 1120-1125, September 2002.
[14] Behzad Razavi, “Design of Integrated Circuits for Optical Communications,” McGRAW-HILL, International Edition, 2003.
[15] P. Han, C. Lee, and W. Choi, “A novel 622Mbps burst mode CDR circuit using two-loop switching,” Journal of Semiconductor Technology and Science, vol.3, no.4, pp.188-193, Dec. 2003.
[16] Chih-Kong Ken Yang, et al. , “A 0.5μm CMOS 4.0-Gbit/s serial link transceiver with data recovery using oversampling,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 713-722, May. 1998.
[17] Che-Fu Liang, et al., “A 2.5Gbps Burst-Mode Clock and Data Recovery Circuit,” Proceedings of Technical Papers on IEEE Asian Solid-State Circuits, pp. 457-460, Nov. 2005.
[18] A. E. Dunlop, W. C. Fischer, M. Banu, and T. Gabara, AT&T Bell Laboratories, Murray Hill, NJ, “150/30 Mb/s CMOS Non-Oversampled Clock and Data Recovery Circuits with instantaneous Locking and Jitter Rejection,” IEEE ISSCC Digest of Technical Papers, pp. 44-45, Feb. 1995.
[19] “G.984.2 Gigabit-capable passive optical networks (GPON): Physical media dependent (PMD) layer,” ITU-T, 2003.
[20] T. Lwata, T. Hirata, H. Sugimoto, H. Kimura, and T. Yoshikawa, “A 5Gbps CMOS Frequency Tolerant Multi Phase Clock Recovery Circuit,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 83-82, 2002.
[21] A. E. Dunlop, W. C. Fischer, M. Banu, and T. Gabara, “150/30 Mb/s CMOS Non-Oversampled Clock and Data Recovery Circuits with instantaneous Locking and Jitter Rejection,” IEEE ISSCC Digest of Technical Papers, pp. 44-45, Feb. 1995.
[22] M. Banu, and A. Dunlop, AT&T Bell Labs, Murray Hill, NJ, “A 660 Mb/s CMOS Clock Recovery Circuit with Instantaneous Locking for NRZ Data and Burst-Mode Transmission,” IEEE ISSCC Digest of Technical Papers, pp. 102-103, Feb. 1995.
[23] Y. Ota, R.G. Swartz, M. Banu, and A.E. Dunlop, “High-Speed, Burst-Mode, Packet-Capable Optical Receiver and Instantaneous Clock Recovery for Optical Bus Operation,” IEEE Journal of Light wave Technology, vol.12, no. 2, pp. 325-331, Feb. 1994.
[24] P. Han, and W. Choi, “1Gb/s gated-oscillator burst mode CDR for half-rate clock recovery,” Journal of Semiconductor Technology and Science, vol. 4, no.4, pp. 275-279, Dec. 2004.
[25] J. Hwang, C. Park, and C. Park, “155-Mb/s Burst-Mode Clock Recovery Circuit Using the Jitter Reduction Technique,” IEICE Transaction Communication, vol. E86-B, no.4, pp.1423-1426, Apr. 2003.
[26] M. Nogawa, K. Nishimura, S. Kimura, T. Yoshida, T. Kawamura, M. Togashi, K. Kumozaki, and Y. Ohtomo, “A 10Gb/s Burst-Mode CDR IC in 0.13um CMOS,” IEEE ISSCC Digest of Technical Papers, pp. 228-229, Feb.2005.
[27] Yu-Gun KIM, Chun-Oh LEE, Seung-Woo LEE, Hyun-Su CHAI, Hyun-Suk RYU, Woo-Young CHOI, “Novel 622Mb/s Burst-Mode Clock and Data Recovery Circuits with Muxed Oscillators,” IEICE Transaction Communication, vol.E86-B, no. 11, Nov. 2003.
[28] C. H. Lin, and K. Bult, “A 10-b, 500-Msample/s CMOS DAC in 0.6mm2,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998.
[29] C. S. Vaucher, Z. Wang, et al., “A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35-um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 35, no. 7 , pp. 1039-1045, May. 2000.
[30] Y. Kado, et al., “An ultralow power CMOS/SIMOX programmable counter LSI,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 1582–1587, Oct. 1997.
[31] T. Seneff, et al., “A sub-1 mA 1.6 GHz silicon bipolar dual modulus prescaler,” IEEE Journal of Solid-State Circuits, vol. 29, pp. 1206–1211, Oct.1994.
[32] J. Craninckx and M. Steyaert, “A 1.75 GHz/3 V dual-modulus divide by 128/129 prescalar in 0.7 um CMOS,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 890–897, July 1996.
[33] F. Piazza and Q. Huang, “A low power CMOS dual modulus prescaler for frequency synthesizers,” IEICE Transaction Electron., vol. E80-C, pp. 314–319, Feb. 1997.
[34] P. Larsson, “High-speed architecture for a programmable frequency divider and a dual-modulus prescaler,” IEEE Journal of Solid-State Circuits, vol.31, pp. 744–748, May 1996.
[35] J. Navarro Soares, Jr. and W. A. M. Van Noije, “A 1.6 GHz dual-modulus prescaler using the extended true-single-phase-clock CMOS circuit technique (E-TSPC),” IEEE Journal of Solid-State Circuits, vol. 34, pp. 97–102, Jan. 1999.
[36] R. B. Staszewski, et al., “A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 2203-2211, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top