|
[1] Hitoyuki Tagami, et al., “A Burst-Mode Bit Synchronization IC with Large Tolerance for Pulse-Width Distortion for Gigabit Ethernet PON,” IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2555–2565, Nov. 2006. [2] Ethernet in the First Mile Task Force, IEEE 802.3ah, IEEE Standards Association. [3] Jri Lee and Mingchung Liu, “A 20Gb/s Burst-Mode CDR Circuit Using Injection-Locking Technique,” IEEE ISSCC Digest of Technical Papers, pp. 46-47, Feb., 2007. [4] Lan-Chou Cho, Chihun Lee and Shan-Iuan Liu, “A 33.6-to-33.8Gb/s Burst-Mode CDR in 90nm CMOS,” IEEE ISSCC Digest of Technical Papers, pp. 48-49, Feb., 2007. [5] Jri Lee and Behzad Razavi, “A 40Gb/s Clock and Data Recovery Circuit in 0.18µm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 38 , no. 12 , pp. 2181-2188 , Dec. 2003. [6] J. Savoj and Behzad Razavi, “A 10 Gb/s CMOS clock and data recovery circuit with a half-rate binary phase/frequency detector,” IEEE Journal of Solid-State Circuits, vol. 38, no. 1, p. 13, Jan. 2003. [7] R.-J. Yang, S.-P. Chen, and S.-I. Liu, “A 3.125 Gb/s clock and data recovery circuit for the 10 Gbase-LX4 Ethernet,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, p. 1356, Aug. 2004. [8] A. Rezayee and K. Martin, “A 9-16 Gb/s clock and data recovery circuit with three-state phase detector and dual-path loop architecture,” in Proc. 29th Europe Solid-State Circuits Conf. (ESSCIRC), Sep. 2003, pp. 683–686. [9] E. Nosaka, H. Sano, K. Ishii, M. Ida, K. Kurishima, S. Yamahata, T. Shibata, H. Fukuyama, M. Yoneyama, T. Enoki, and M. Muraguchi, “A 39-to-45 Gb/s multi-data-rate clock and data recovery circuit with a robust lock detector,” IEEE Journal of Solid-State Circuits, vol. 39, no. 8, pp. 1361–1365, Aug. 2004. [10] S. Jonathan E. Rogers, and John R. Long, “A 10Gb/s CDR/DEMUX with LC Delay Line VCO in 0.18μm CMOS,” IEEE ISSCC Digest of Technical Papers, pp. 254-255, 2002. [11] M. Meghelli et al., “SiGe BiCMOS 3.3-V Clock and Data Recovery Circuits for 10-Gb/s Serial Transmission System,” IEEE Journal of Solid-State Circuits, vol.35, No. 12, pp. 1992-1995, Dec. 2000. [12] Y. M. Greshishchev et al., “SiGe Clock and Data Recovery IC with Linear-Type PLL for 10-Gb/s SONET Application,” IEEE Journal of Solid-State Circuits, vol.35, No. 9, pp. 1353-1359, September 2000. [13] S. G. Georgiou, Y. Baeyens et al., “Clock and Data Recovery IC for 40-Gb/s Fiber-Optical Receiver,” IEEE Journal of Solid-State Circuits, vol.37, No. 9, pp. 1120-1125, September 2002. [14] Behzad Razavi, “Design of Integrated Circuits for Optical Communications,” McGRAW-HILL, International Edition, 2003. [15] P. Han, C. Lee, and W. Choi, “A novel 622Mbps burst mode CDR circuit using two-loop switching,” Journal of Semiconductor Technology and Science, vol.3, no.4, pp.188-193, Dec. 2003. [16] Chih-Kong Ken Yang, et al. , “A 0.5μm CMOS 4.0-Gbit/s serial link transceiver with data recovery using oversampling,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 713-722, May. 1998. [17] Che-Fu Liang, et al., “A 2.5Gbps Burst-Mode Clock and Data Recovery Circuit,” Proceedings of Technical Papers on IEEE Asian Solid-State Circuits, pp. 457-460, Nov. 2005. [18] A. E. Dunlop, W. C. Fischer, M. Banu, and T. Gabara, AT&T Bell Laboratories, Murray Hill, NJ, “150/30 Mb/s CMOS Non-Oversampled Clock and Data Recovery Circuits with instantaneous Locking and Jitter Rejection,” IEEE ISSCC Digest of Technical Papers, pp. 44-45, Feb. 1995. [19] “G.984.2 Gigabit-capable passive optical networks (GPON): Physical media dependent (PMD) layer,” ITU-T, 2003. [20] T. Lwata, T. Hirata, H. Sugimoto, H. Kimura, and T. Yoshikawa, “A 5Gbps CMOS Frequency Tolerant Multi Phase Clock Recovery Circuit,” Symposium on VLSI Circuits Digest of Technical Papers, pp. 83-82, 2002. [21] A. E. Dunlop, W. C. Fischer, M. Banu, and T. Gabara, “150/30 Mb/s CMOS Non-Oversampled Clock and Data Recovery Circuits with instantaneous Locking and Jitter Rejection,” IEEE ISSCC Digest of Technical Papers, pp. 44-45, Feb. 1995. [22] M. Banu, and A. Dunlop, AT&T Bell Labs, Murray Hill, NJ, “A 660 Mb/s CMOS Clock Recovery Circuit with Instantaneous Locking for NRZ Data and Burst-Mode Transmission,” IEEE ISSCC Digest of Technical Papers, pp. 102-103, Feb. 1995. [23] Y. Ota, R.G. Swartz, M. Banu, and A.E. Dunlop, “High-Speed, Burst-Mode, Packet-Capable Optical Receiver and Instantaneous Clock Recovery for Optical Bus Operation,” IEEE Journal of Light wave Technology, vol.12, no. 2, pp. 325-331, Feb. 1994. [24] P. Han, and W. Choi, “1Gb/s gated-oscillator burst mode CDR for half-rate clock recovery,” Journal of Semiconductor Technology and Science, vol. 4, no.4, pp. 275-279, Dec. 2004. [25] J. Hwang, C. Park, and C. Park, “155-Mb/s Burst-Mode Clock Recovery Circuit Using the Jitter Reduction Technique,” IEICE Transaction Communication, vol. E86-B, no.4, pp.1423-1426, Apr. 2003. [26] M. Nogawa, K. Nishimura, S. Kimura, T. Yoshida, T. Kawamura, M. Togashi, K. Kumozaki, and Y. Ohtomo, “A 10Gb/s Burst-Mode CDR IC in 0.13um CMOS,” IEEE ISSCC Digest of Technical Papers, pp. 228-229, Feb.2005. [27] Yu-Gun KIM, Chun-Oh LEE, Seung-Woo LEE, Hyun-Su CHAI, Hyun-Suk RYU, Woo-Young CHOI, “Novel 622Mb/s Burst-Mode Clock and Data Recovery Circuits with Muxed Oscillators,” IEICE Transaction Communication, vol.E86-B, no. 11, Nov. 2003. [28] C. H. Lin, and K. Bult, “A 10-b, 500-Msample/s CMOS DAC in 0.6mm2,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998. [29] C. S. Vaucher, Z. Wang, et al., “A Family of Low-Power Truly Modular Programmable Dividers in Standard 0.35-um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 35, no. 7 , pp. 1039-1045, May. 2000. [30] Y. Kado, et al., “An ultralow power CMOS/SIMOX programmable counter LSI,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 1582–1587, Oct. 1997. [31] T. Seneff, et al., “A sub-1 mA 1.6 GHz silicon bipolar dual modulus prescaler,” IEEE Journal of Solid-State Circuits, vol. 29, pp. 1206–1211, Oct.1994. [32] J. Craninckx and M. Steyaert, “A 1.75 GHz/3 V dual-modulus divide by 128/129 prescalar in 0.7 um CMOS,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 890–897, July 1996. [33] F. Piazza and Q. Huang, “A low power CMOS dual modulus prescaler for frequency synthesizers,” IEICE Transaction Electron., vol. E80-C, pp. 314–319, Feb. 1997. [34] P. Larsson, “High-speed architecture for a programmable frequency divider and a dual-modulus prescaler,” IEEE Journal of Solid-State Circuits, vol.31, pp. 744–748, May 1996. [35] J. Navarro Soares, Jr. and W. A. M. Van Noije, “A 1.6 GHz dual-modulus prescaler using the extended true-single-phase-clock CMOS circuit technique (E-TSPC),” IEEE Journal of Solid-State Circuits, vol. 34, pp. 97–102, Jan. 1999. [36] R. B. Staszewski, et al., “A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 2203-2211, 2005.
|