|
[1] WPAN High Rate Alternative PHY Task Group 3a (TG3a), IEEE 802.15, 2007 [Online]. Available: http://www.ieee802.org/15/pub/ TG3a.html [2] N. R. Erickson, R. M. Grosslein, R. B. Erickson, and S. Weinreb, “A cryogenic focal plane array for 85–115 GHz using MMIC preamplifiers,” IEEE Trans. Microwave. Theory Tech. 47(12), 2212–2219 (1999), Dec. [3] N. Wadefalk, et. al., “Cryogenic wide-band ultra-low noise IF amplifiers operating at ultra-low DC power,” IEEE Trans. Microwave Theory Tech. 51(6), 1705–1711 (2003), Jun. [4] X. Guan and C. Nguyen, “Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems,” IEEE Trans. Microwave Theory Tech. 54(8), 3278–3283 (2006), Aug. [5] P. Heydari, “Design and Analysis of a Performance-Optimized CMOS UWB Distributed LNA,” IEEE J. Solid-State Circuits. 42(9), 1892–1904 (2007), Sept. [6] L. Yang, K. S. Yeo, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, “A novel CMOS low-noise amplifier design for 3.1-to 10.6-GHz ultra-wide-band wireless receivers,” IEEE Trans. Circuits Syst. I. 53(8), 1683–1692 (2006), Aug. [7] A. Ismail and A. Abidi, “A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, 39(12), 2269–2277 (2004), Dec. [8] A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, “A fully integrated differential CMOS LNA for 3–5-GHz ultrawideband wireless receivers,” IEEE Microwave Wireless Compon. Lett. 16(3), 134–136 (2006), Mar. [9] Y.-J. E. Chen and Y.-I. Huang, “Development of Integrated Broad-Band CMOS Low-Noise Amplifiers,” IEEE Trans. Circuits Syst. I. 54(10), 2120-2127 (2007), Oct. [10] C.-T. Fu, and C.-N. Kuo, “3~11-GHz CMOS UWB LNA using dual feedback for broadband matching,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., San Francisco, California, pp. 67-70, 2006. [11] C.-T. Fu, C.-L. Ko, C.-N Kuo, and Y.-Z. Juang, “A 2.4-5.4-GHz Wide Tuning-Range CMOS Reconfigurable Low-Noise Amplifier,” IEEE Trans. Microwave Theory Tech. 56(12), 2754–2763 (2008), Dec. [12] R. Hu, “Wide-band matched LNA design using transistor's intrinsic gate-drain capacitor,” IEEE Trans. Microwave Theory Tech., 54(3), 1277–1286 (2006), Mar. [13] C. -W. Kim, M. –S. Jung, and S. -G. Lee, “Ultra-wideband CMOS low noise amplifier,” Electron. Lett., vol. 41, no. 7, pp. 384-385, Mar. 2005. [14] M. K. Chirala, X. Guan and C. Nguyen, “Integrated Multilayered On-Chip Inductors for Compact CMOS RFICs and Their Use in a Miniature Distributed Low-Noise-Amplifier Design for Ultra-Wideband Applications,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 8, pp. 1783–1789, Aug. 2008. [15] C. F. Liao and S. I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receiver,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007. [16] Y.-H. Yu, Y.-J. E. Chen, and D. Heo “A 0.6-V Low Power UWB CMOS LNA,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 3, pp. 229–231, Mar. 2007. [17] B. Park, S. Choi, and S. Hong “A Low-Noise Amplifier With Tunable Interference Rejection for 3.1-to 10.6-GHz UWB Systems,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 1, pp. 40–42, Jan. 2010. [18] Y.-J. E. Chen, and Y.-I. Huang, “Development of integrated broad-band CMOS low-noise amplifier,” IEEE Train. Circuits Syst. I. Reg. Papers, vol. 54, no. 10, pp. 2120–2127, Oct. 2007. [4] [19] C.-Y. Wu, Y.-K. Lo, and M.-C. Chen, “A 3–10 GHz CMOS UWB Low-Noise Amplifier With ESD Protection Circuits,” IEEE Microw.Wireless Compon. Lett., vol. 19, no. 11, pp. 737–739, Nov. 2009. [20] S.-F. Chao, J.-J. Kuo, C.-L Lin, M.-D. Tsai, and H. Wang, “A DC-11.5 GHz Low-Power, Wideband Amplifier Using Splitting-Load Inductive Peaking Technique,” IEEE Microw.Wireless Compon. Lett., vol. 18, no. 7, pp. 482–484, Jul. 2008. [21] H. Zhang, X. Fan and E. S. Sinencio, “A Low-Power Linearized Ultra-Wideband LNA Design Technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320–330, Feb. 2009.[5] [22] C. Fang, C. L. Law, and J. Hwang, “A 3.1–10.6 GHz Ultra-Wideband Low Noise Amplifier With 13-dB Gain, 3.4-dB Noise Figure, and Consumes Only 12.9 mW of DC Power,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 4, pp. 295–297, Apr. 2007. [23] D. Pepe, and D. Zito, “22.7-dB Gain –19.7-dBm ICP1dB UWB CMOS LNA,” IEEE Train. Circuits Syst. II. Express. Briefs, vol. 56, no. 9, pp. 689–693, Sep. 2009.[7] [24] T. Chang, J. Chen, L. A. Rigge, and J. Lin, “ESD-Proteced Wideband CMOS LNAs Using Modified Resistive Feedback Techniques With Chip-on-Board Packaging,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 8, pp. 1817–1826, Aug. 2008.[8] [25] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “Wideband balun-LNA with simultaneous output balancing noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341–1350, Jun. 2008.[9] [26] C.-T. Fu, and C.-N. Kuo, “3∼11-GHz CMOS UWB LNA using dual feedback for broadband matching,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2006, pp. 67-70. [27] S.-C. Wand, P. Su, K.-M. Chen, K.-H. Liao, B.-Y. Chen, S.-Y. Huang, C.-C. Hung, and G.-W. Huang, “Comprehensive Noise Characterization and modeling for 65-nm MOSFETs for Millimeter-Wave Applications,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 4, pp. 740–746, Apr. 2010. [28] S. Asgaran, M. J. Deen, C.-H. Chen, G. A. Rezvani, Y. Kamali, and Y. Kiyota, “Analytical Determination of MOSFET’s High-Frequency Noise Parameters From NF50 Measurements and Its Application in RFIC Design,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1034–1043, May. 2007. [29] H.-I. Wu, R. Hu, and C. F. Jou, “Complementary UWB LNA Design Using Asymmetrical Inductive Source Degeneration,” IEEE Microw.Wireless Compon. Lett., vol. 20, no. 7, pp. 402–404, Jul. 2010. [30] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Design of CMOS for 60 GHz applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, vol. 1, pp. 440–538. [31] B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. of Solid-State Circuits, vol. 41, no. 1, pp. 17–23, Jan. 2006. [32] T. Yao, M. Gordon, K. Yau, M. T. Yang, and S. P.Voinigescu, “60-GHz PA and LNA in 90-nm RF-CMOS,” in IEEE RFIC Symp. Dig., Jun. 2006, pp. 147–150. [33] D. Alldred, B. Cousins, and S. P. Voinigescu, “A 1.2 V, 60 GHz radio receiver with on-chip transformers and inductors in 90 nm CMOS,” in Proc. IEEE CSICS, Nov. 2006, pp. 51–54. [34] C.-H. Wang, H.-Y. Chang, P.-S. Wu, K.-Y. Lin, T.-W. Huang, H. Wang, and C.-H. Chen, “A 60 GHz low-power six-port transceiver for gigabit software-defined transceiver applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 192–193. [35] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A highly integrated 60 GHz CMOS front-end receiver,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 190–191. [36] B. Razavi, “A mm-wave CMOS hetrodyne receiver with on-chip LO and divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 188–189. [37] J. M. Gilbert, C. H. Doan, S. Emami, and C. B. Shung, “A 4-Gbps uncompressed wireless HD A/V transceiver chipset,” IEEE Micro, vol. 28, pp. 56–64, 2008. [38] S. T. Nicolson and S. P. Voinigescu, “Methodology for simultaneous noise and impedance matching in W-band LNAs,” in Proc. IEEE CSICS, Nov. 2006, pp. 279–282. [39] B. Heydari, M. Bohsali, E. Adabi, and A. M. Niknejad, “Low-power mm-wave components up to 104 GHz in 90 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 200–201. [40] A. Liscidini, M. Brandolini, D. Sanzogni, and R. Castello, “A 0.13 um CMOS front-end for DCS1800/UMTS/802.11b-g with multi-band positive feedback LNA,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 981–988, Apr. 2006. [41] P. Rossi, A. Liscidini, M. Brandolini, and F. Svelto, “A variable gain RF front-end, based on a voltage-voltage feedback LNA, for multistandard applications,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368–374, Feb. 2004. [42] W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. P. de Gyvez, D. J. Allstot, and E. Sánchez-Sinencio, “A capacitor cross-coupled commongate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005. [43] X. Guan and A. Hajimiri, “A 24 GHz CMOS front-end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368–374, Feb. 2004. [44] S.Woo, W. Kim, C. Lee, K. Lim, and J. Laskar, “A 3.6mW differential common-gate CMOS LNA with positive-negative feedback,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2009, pp. 218–219. [45] D. G. Im, S. S. Song, H. T. Kim, and K. Lee, “A wide-band CMOS variable-gain low noise amplifier for multi-standard terrestrial and cable TV tuner,” in IEEE Radio Freq. Integrated Circuits Symp. Dig., Honolulu, HI, Jun. 2007, pp. 621–624. [46] J.-H. C. Zhan and S. S. Taylor, “A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard applications,” in IEEE ISSCC Dig.Tech. Papers, 2006, pp. 200–201. [47] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004. [48] F. Lee and A. Chandrakasan, “A BiCMOS ultra-wideband 3.1–10.6-GHz front-end,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1784–1790, Aug. 2006. [49] Y. Lu, R. Krithivasan, W.-M. L. Kuo, and J. D. Cressler, “A 1.8–3.1 dB noise figure (3–10 GHz) SiGe HBT LNA for UWB applications,” in Proc. IEEE RFIC Symp., San Francisco, CA, 2006, pp. 59–62.
|