(3.238.186.43) 您好!臺灣時間:2021/03/02 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許凱修
論文名稱:具順向導通電荷汞控制技術之單電感多輸出升壓型直流轉直流轉換電路
論文名稱(外文):Freewheel Charge-Pump Controlled Single-Inductor Multiple-Output Step-Up DC-DC Converter
指導教授:洪崇智
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:86
中文關鍵詞:切換式電源轉換電路單電感多輸出直流轉直流轉換電路
外文關鍵詞:switching convertersingle-inductor multiple-output DC-DC converter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:363
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著積體電路的發展,晶片面積不斷縮小,晶片的電壓也越來越低,而手持式裝置的流行,例如︰MP3 player、smart phone、cellular phone…等,令電源管理積體電路更為重要,電源管理積體電路提供了智慧型的電源管理,用來延長電池的壽命,而電源管理積體電路中最重要的區塊為直流轉直流轉換電路。電源轉換電路最大的功能在於電壓的轉換以及電壓的穩定,以提供核心電路一個良好且穩定的電壓。故設計與研發一個良好的電源轉換電路具有相當的前瞻性以及發展性。
本論文首先提出了一使用利用增強型誤差放大器之降壓型直流轉直流轉換電路,利用此利用增強型誤差放大器可以提高準確性與暫態響應。接著提出以順向導通電荷汞控制技術之方法,在原電感輸出中增加電荷汞輸出,達到增加輸出但不會拉長操作週期,重複使用此順向導通開關時間的單電感多輸出升壓型直流轉直流轉換電路解決了傳統電路中順向導通開關時間的浪費。
利用增強型誤差放大器的高準確降壓型直流轉直流轉換電路,其工作電壓為3.6V~4.2V,擁有最高400mA的負載電流。此電源轉換器以台積電0.35μm CMOS製程實現,使用面積為1.46×1.91mm2.
採取順向導通電荷汞控制技術之方法的單電感多輸出升壓型直流轉直流轉換電路,其工作電壓為1.8V,可以得到四組輸出,兩組電感輸出與兩組電荷汞輸出。其電感輸出擁有最高70mA的負載電流與低交越穩壓,並且擁有0.08mV/mA、0.05mV/mA的負載穩壓和21mV/V、12mV/V的線性穩壓。而電荷汞輸出擁有1.7mV/mA、1.9mV/mA的負載穩壓。此順向導通電荷汞控制技術單電感多輸出升壓型直流轉直流轉換電路以台積電0.18μm CMOS製程實現,使用面積為1.3×1.3mm2.

摘要...................................................................................................................................I
圖表目錄..............................................................................................................IX
第一章 簡介....................................................................................................................1
1.1 研究背景..........................................................................................................1
1.2 研究動機..........................................................................................................2
1.3 論文架構………..............................................................................................3
第二章 降壓型切換式電源轉換電路........................................................................4
2.1 簡介..................................................................................................................4
2.2 操作模式..........................................................................................................5
2.2.1 連續導通模式(continuous-conduction mode, CCM).......................5
2.2.2 不連續導通模式(discontinuous-conduction mode, DCM)…..........8
2.3 控制模式…………….…...............................................................................10
2.3.1 電壓模式控制(voltage mode).........................................................10
2.3.2 電流模式控制(current mode).........................................................11
2.3.2.1 次諧波振盪(sub-harmonic oscillation)..........................13
2.3.2.2 斜波補償(slope compensation)......................................16
2.4 補償電路與穩定度........................................................................................18
2.4.1 系統分析.........................................................................................18
2.4.2 輸出濾波區塊…….........................................................................19
2.4.3 調變區塊…….................................................................................19
2.4.4 補償迴路區塊與閉迴路穩定度.....................................................20
2.5 切換式電源轉換電路的基本規格................................................................22
2.5.1電源轉換效率(Efficiency)...............................................................22
2.5.2 線性穩壓(line regulation)...............................................................24
2.5.3 負載穩壓(load regulation)..............................................................24
2.5.4 線性暫態響應(line transient response)...........................................24
2.5.5 負載暫態響應(load transient response)..........................................25
第三章 高準確降壓型直流轉直流轉換電路利用增強型誤差放大器......................26
3.1 簡介................................................................................................................26
3.2 高準確降壓型直流轉直流轉換電路之電路架構........................................26
3.3 細部電路........................................................................................................27
3.3.1 改良式誤差放大器.........................................................................27
3.3.2 能帶隙電壓參考電路.....................................................................29
3.3.3 電感電流感測電路.........................................................................31
3.3.4 振盪器和加成電路.........................................................................33
3.3.5 比較器.............................................................................................35
3.3.6 脈寬調變電路器.............................................................................35
3.3.7 功率電晶體驅動電路.....................................................................36
3.3.8 啟動電路.........................................................................................37
3.4 小結……........................................................................................................38
第四章 降壓型切換式電源轉換電路模擬與量測結果..............................................39
4.1 簡介................................................................................................................39
4.2 模擬結果........................................................................................................39
4.2.1 線性穩壓.........................................................................................39
4.2.2 負載穩壓.........................................................................................39
4.2.3 線性暫態響應.................................................................................40
4.2.4 負載暫態響應.................................................................................41
4.2.5 電源轉換效率.................................................................................45
4.2.6 預計規格表.....................................................................................46
4.3 晶片布局與微顯圖........................................................................................46
4.4 量測結果........................................................................................................47
4.4.1 線性穩壓.........................................................................................47
4.4.2 負載穩壓.........................................................................................47
4.4.3 線性暫態響應.................................................................................47
4.4.4 負載暫態響應.................................................................................49
4.4.5 電源轉換效率.................................................................................51
4.4.6 規格表.............................................................................................51
4.4.7 比較規格表.....................................................................................52
第五章 單電感多輸出電源轉換電路..........................................................................53
5.1 簡介................................................................................................................53
5.2 多輸出電源轉換電路....................................................................................54
5.2.1 N電感N輸出電源轉換電路...........................................................54
5.2.2 單一升壓電路與N-1線性穩壓電路..............................................55
5.3 單電感多輸出電源轉換電路........................................................................55
5.3.1 操作模式.........................................................................................56
5.3.2 交越穩壓(cross-regulation effect)...................................................58
5.4 文獻回顧........................................................................................................58
第六章 具順向導通電荷汞控制技術之單電感多輸出升壓型直流轉直流轉換電路….............................................................. .............................................................. ..61
6.1 簡介................................................................................................................61
6.2 具順向導通電荷汞控制技術之單電感多輸出升壓型直流轉直流轉換電路... ................................................................................................................................62
6.3 細部電路........................................................................................................65
6.3.1 誤差放大器.....................................................................................65
6.3.2 類比多工器.....................................................................................66
6.3.3 啟動電路.........................................................................................67
6.3.4 振盪器.............................................................................................68
6.3.5 脈寬調變電路….............................................................................69
6.3.6 相位控制電路….............................................................................69
6.3.7 電壓平移電路.............................................................................70
6.3.8 功率電晶體驅動電路.....................................................................71
6.3.9 電流感測電路.................................................................................71
6.3.10 電流偵測電路...............................................................................72
6.4 小結……........................................................................................................73
第七章 單電感多輸出電源轉換電路模擬與量測結果..............................................74
7.1 簡介................................................................................................................74
7.2 模擬結果........................................................................................................74
7.2.1 輸出波形.........................................................................................74
7.2.2 線性穩壓.........................................................................................75
7.2.3 負載穩壓.........................................................................................75
7.2.4 負載暫態響應.................................................................................75
7.2.5 預計規格表.....................................................................................77
7.3 晶片布局與微顯圖........................................................................................77
7.4 量測結果........................................................................................................78
7.4.1 輸出波形.........................................................................................78
7.4.2 線性穩壓.........................................................................................78
7.4.3 負載穩壓.........................................................................................78
7.4.4 線性暫態響應.................................................................................79
7.4.5 負載暫態響應.................................................................................79
7.4.6 規格表.............................................................................................80
第八章 結論..................................................................................................................81
8.1 結論................................................................................................................81
8.2 未來展望........................................................................................................82
參考文獻........................................................................................................................83

[1] “TPS65120: Single-Inductor Quadruple-Output TFT LCD Power Supply,” 2004, Texas Instruments Incorporated.

[2] H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, and G.-H. Cho, "A Single-Inductor Switching DC–DC Converter With Five Outputs and Ordered Power-Distributive Control," IEEE J. Solid-State Circuits, vol.42, no.12, pp.2706-2714, Dec. 2007

[3] C.-S. Chae, H.-P. Le, K.-C. Lee, G.-H. Cho, and G.-H. Cho, "A Single-Inductor Step-Up DC-DC Switching Converter With Bipolar Outputs for Active Matrix OLED Mobile Display Panels," IEEE J. Solid-State Circuits, vol.44, no.2, pp.509-524, Feb. 2009

[4] D. Ma, W. H. Ki, and C. Y. Tsui, "A pseudo-CCM/DCM SIMO switching converter with freewheel switching," IEEE J. Solid-State Circuits, vol.38, no.6, pp. 1007- 1014, June 2003

[5] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA: Kluwer, 2001.

[6] C. F. Lee and P. K. T. Mok, “A Monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.

[7] F. F. Ma, W. Z. Chen, and J. C. Wu, “A Monolithic Current-Mode Buck Converter With Advanced Control and Protection Circuits,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1836–1846, Sept. 2007.

[8] C. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V integrated current-mode boost converter in standard 3.3/5V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265–2274, Nov. 2005.

[9] J. Kim, H. Chu, and C. Kim, “Current-mode DC-DC buck converter with reliable hysteretic-mode control and dual modulator for fast dynamic voltage scaling,” in IEEE MWCAS, Aug. 2009, pp. 941 – 944.

[10] C. Y. Leung, P. K. T. Mok, K. N. Leung, and M. Chan, “An Integrated CMOS Current-Sensing Circuit for Low-Voltage Current-Mode Buck Regulator,” IEEE Transactions on Circuits and Systems – II: Express Briefs, vol. 52, No. 7, July 2005.

[11] H.P. Forghani-zadeh and G.A. Rincón-Mora, “Current-sensing techniques for DC-DC converters,” in Proc. 2002 MWSCAS, pp. 577-580.

[12] C. F. Lee, “Design of Monolithic Current-Mode DC-DC Buck Converters with Internal Current Sensing,” Master Thesis, The Hong Kong University of Science and Technology, Hong Kong, China, August 2001.

[13] F. F. Ma, “Advanced Control and Protection Techniques for DC-DC Switched Mode Power Supply IC Design,” PhD Thesis, National Chiao Tung University, Taiwan, July 2007.

[14] M. K. Kazimierczuk, “Transfer function of current modulator in PWM converters with current-mode control”, IEEE Transactions on Circuits and Systems I, Vol. 47, No. 9, pp.1407-1412, Sept. 2000.

[15] D. Ma, W.-H. Ki, C.-Y. Tsui, and P. K. T. Mok, “Single-Inductor Multiple-Output Switching Converters With Time-Multiplexing Control in Discontinuous Conduction Mode,” IEEE J. Sloid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan., 2003.

[16] M.-H. Huang and K.-H. Chen, “Single-Inductor Multi-Output (SIMO) DC-DC
Converters With High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices,” IEEE J. Sloid-State Circuits, vol. 44, no. 4, April 2009

[17] D. Ma, W. H. Ki, P. K. T. Mok, , and C. Y. Tsui; , "Single-inductor multiple-output switching converters with bipolar outputs," IEEE ISCAS, vol.3, no., pp.301-304 vol. 2, 6-9 May 2001

[18] X. Jing, P. K. T. Mok and M. C. Lee, “A Wide-Load-Range Single-Inductor-Dual-Output Boost Regulator with Minimized Cross-Regulation by Constant-Charge-Auto-Hopping (CCAH) Control,” IEEE CICC, pp.299-302, 13-16 Sept. 2009

[19] C.-S. Chae, H.-P. Le, K.-C. Lee, et al., “A Single-Inductor Step-Up DC-DC Switching Converter with Bipolar Outputs for Active Matrix OLED Mobile Display Panels,” ISSCC Dig. Tech. Papers, pp. 136–137, Feb., 2007.

[20] D. Ma, W.-H. Ki, and C.-Y. Tsui, “A Pseudo-CCM/DCM SIMO Switching Converter with Freewheel Switching,” ISSCC Dig. Tech. Papers, pp. 390-391, Feb., 2002.

[21] D. Kwon, and G. A. Rincón-Mora, “Single-Inductor–Multiple-Output Switching DC–DC Converters,” IEEE Transactions on Circuits and Systems – II: Express Briefs, vol. 56, No. 8, August 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔