(3.237.97.64) 您好!臺灣時間:2021/03/05 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳俊宇
論文名稱:針對IEEE 802.16 寬頻無線網路的睡眠模式運作之效能分析及以部分可探測馬可夫判斷過程為基礎之睡眠訊框決策
論文名稱(外文):Comprehensive Performance Analysis and POMDP-based Sleep Window Determination for IEEE 802.16 Broadband Wireless Networks
指導教授:方凱田
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:55
中文關鍵詞:IEEE 802.16eIEEE 802.16m睡眠模式運作機制節能效能分析部分可探測馬可夫判斷過程
外文關鍵詞:IEEE 802.16eIEEE 802.16msleep mode operationpower-savingperformance analysisPOMDP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
IEEE 802.16標準是為了支援下一代無線寬頻存取網路中高資料率及高移動性之服務而發展出來的。在這一系列的標準當中,為了使行動裝置可達到節能的目的,具體制訂了一些睡眠模式運作的機制。在本論文中,首先分別針對IEEE 802.16e以及IEEE 802.16m提出分析模型,其中下行(downlink)與上行(uplink)鏈路傳輸所造成的效果,皆被審慎納入分析模型的考慮當中,並在隨後利用模擬以驗證這些模型的有效性。然而,根據IEEE 802.16e/m兩系統之省電效能評估的結果,可以發現由既有機制(例如:頻繁的狀態切換、使用率低的聆聽訊框、以及利用二進制指數成長的睡眠訊框長度)所產生的效能低下。因此,此論文提出一個以部分可探測馬可夫判斷過程為基礎之睡眠訊框決策(PSWD)方式,其可利用目前傳輸鏈路之統計特性,決定出每個睡眠訊框適合的長度。而根據目前傳輸鏈路之狀態,且考慮到可容忍之網路延遲之下,PSWD提供一個以耗能為基準的睡眠訊框決定策略。模擬結果可顯示出PSWD方法在節能方面優於傳統的IEEE 802.16e/m省電機制,並且同時滿足不同傳輸需求所對應到之延遲限制。
Contents
Chinese Abstract i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures vii
1 Introduction 1
2 Preliminary 5
2.1 IEEE 802.16e Sleep Mode Operation . . . . . . . . . . . . . . . . . . . 5
2.2 IEEE 802.16m Sleep Mode Operation . . . . . . . . . . . . . . . . . . . 8
2.3 Improvements in Sleep Mode Operations of IEEE 802.16m on IEEE 802.16e 10
3 Modeling of Sleep Mode Operations 12
3.1 Analytical Model for IEEE 802.16e . . . . . . . . . . . . . . . . . . . . 12
3.1.1 Power Saving Class of Type I . . . . . . . . . . . . . . . . . . . 13
3.1.2 Power Saving Class of Type II . . . . . . . . . . . . . . . . . . . 15
3.2 Analytical Model for IEEE 802.16m . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Condition A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Condition B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Condition C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Performance Analysis of IEEE 802.16e/m Systems 22
4.1 Sleep Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1 As for IEEE 802.16e . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1.1 Type I . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1.2 Type II . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 As for IEEE 802.16m . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Mean Packet Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 As for IEEE 802.16e . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1.1 Type I . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1.2 Type II . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 As for IEEE 802.16m . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Proposed POMDP-based Sleep Window Determination (PSWD) Ap-
proach 32
5.1 Traffic State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.1 Average Energy Cost . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Mean Packet Delay . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Sleep Window Determination Policy . . . . . . . . . . . . . . . . . . . . 40
6 Performance Evaluation 43
6.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7 Conclusions 52
Bibliography 53
[1] IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interference for Fixed Broadband Wireless Access Systems, IEEE Standard 802.16-2004, June 2004.
[2] IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interference for Fixed Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Standard
802.16e-2005, Dec. 2006.
[3] IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interference for Fixed Broadband Wireless Access Systems, IEEE Standard 802.16-2009, May 2009.
[4] DRAFT Amendment to IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interference for Fixed Broadband Wireless Access Systems – Advanced Air Interface, IEEE
P802.16m/D7, July 2010.
[5] M.-G. Kim, J. Choi, and M. Kang, “Scheduled Power-Saving Mechanism to Minimize Energy Consumption in IEEE 802.16e Systems,” vol. 12, no. 12, pp. 874–876, 2008.
[6] T.-C. Chen and J.-C. Chen, “Extended Maximizing Unavailability Interval (eMUI): Maximizing Energy Saving in IEEE 802.16e for Mixing Type I and Type II PSCs,” vol. 13, no. 2, pp. 151–153, 2009.
[7] Y. Xiao, “Energy saving mechanism in the IEEE 802.16e wireless MAN,” IEEE Communications Letters, vol. 9, pp. 595–597, 2005.
[8] Y. Zhang, “Performance Modeling of Energy Management Mechanism in IEEE 802.16e Mobile WiMAX,” Proc. IEEE WCNC, pp. 3205–3209, 2007.
[9] J. Almhana, Z. Liu, C. Li, and R. McGorman, “Traffic Estimation and Power Saving Mechanism Optimization of IEEE 802.16e Networks ,” Proc. IEEE ICC, pp. 322–326, 2008.
[10] Y. Park and G. U. Hwang, “Performance Modeling and Analysis of the Sleep-Mode in IEEE 802.16e WMAN,” Proc. IEEE VTC, pp. 2801–2806, 2007.
[11] Y. P. Hsu and K. T. Feng, “Performance Modeling of Power Saving Classes with Multiple Connections for Broadband Wireless Networks,” Proc. IEEE WCNC, pp. 1477–1482, 2008.
[12] Y. Zhang, Y. Xiao, and V. C. Leung, “Energy Management Analysis and Enhancement in IEEE 802.16e WirelessMAN ,” IEEE Transactions on Vehicular Technology, vol. 58, pp. 3738–3752, 2009.
[13] S. Cho and Y. Kim, “Improving Power Savings by Using Adaptive Initial-Sleep Window in IEEE802.16e,” Proc. IEEE VTC, pp. 1321 –1325, 2007.
[14] M. Peng and W. Wang, “An Adaptive Energy Saving Mechanism in the Wireless Packet Access Network,” Proc. IEEE WCNC, pp. 1536–1540, 2008.
[15] M.-G. Kim, J. Choi, and M. Kang, “Adaptive Power Saving Mechanism Considering the Request Period of Each Initiation of Awakening in the IEEE 802.16e System,” IEEE Communications Letters, vol. 12, no. 2, pp. 106–108, 2008.
[16] A. Anisimov, S. Andreev, and A. Turlikov, “IEEE 802.16m energy-efficient sleep mode operation analysis with mean delay restriction,” International Conference on Ultra Modern Telecommunications and Workshops (ICUMT), pp. 1–4, 2009.
[17] S. Baek, J. J. Son, and B. D. Choi, “Performance Analysis of Sleep Mode Operation for IEEE 802.16m Advanced WMAN,” Proc. IEEE ICC Workshops, pp. 1–4, 2009.
[18] E. Hwang, K. J. Kim, J. J. Son, and B. D. Choi, “The Power-Saving Mechanism With Periodic Traffic Indications in the IEEE 802.16e/m,” IEEE Transactions on Vehicular Technology, vol. 59, no. 1, pp. 319 –334, 2010.
[19] L. Kleinrock, Queueing System, 1st ed. New York : Wiley, 1975.
[20] L. Kong and D. Tsang, “Performance Study of Power Saving Classes of Type I and II in IEEE 802.16e,” Proc. IEEE LCN, pp. 20–27, 2006.
[21] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed. New York : Wiley, 1998.
[22] L. Miller, “A Note on the Busy Period of an M/G/1 Finite Queues,” Operations Research, vol. 23, pp. 1179–1182, 1975.
[23] S. W. Fuhrmann, “A Note on the M/G/1 Queue with Server Vacations,” Operations Research, vol. 32, pp. 1368–1373, 1984.
[24] C. H. Hsu, K. T. Feng, and C. J. Chang, “Statistical Control Approach for Sleep Mode Operations in IEEE 802.16m Systems,” IEEE Transactions on Vehicular Technology, vol. PP, pp. 1–1, 2010.
[25] A. C. Cassandra, “Exact and approximate algorithms for partially observable Markov decision processes,” Ph.D. dissertation, Brown Univ., Providence, RI, May 1998.
[26] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and Acting in Partially Observable Stochastic Domains,” Artificial Intelligence, vol. 101, pp. 99–134, 1998.
[27] A. Andersen and B. Nielsen, “A Markovian approach for modeling packet traffic with long-range dependence,” vol. 12, no. 5, pp. 719–732, 1998.
[28] L.Muscariello, M.Mellia, M.Meo, and M. Marsan, “An MMPP-Based Hierarchical Model of Internet Traffic,” Proc. IEEE ICC, vol. 4, pp. 2143 – 2147, 2004.
[29] S. Shah-Heydari and T. Le-Ngoc, “MMPP models for multimedia traffic,” Telecommunication Systems, vol. 15, pp. 273–293, 2000.
[30] Sequans-Communications, “Datasheet: SQN1130 System-on-Chip (SoC) for WiMAX Mobile Stations.”
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔