跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡境宜
研究生(外文):Tsai, Ching-Yi
論文名稱:IEEE 802.11 多重速率無線網路之加強型參數整合調整策略
論文名稱(外文):EARC: Enhanced Adaptation of Link Rate and Contention Window for IEEE 802.11 Multi-rate Wireless Networks
指導教授:林亭佑林亭佑引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:29
中文關鍵詞:多重速率速率調整機制
外文關鍵詞:multi-rateLink adaptationcontention resolution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在IEEE 802.11的無線網路中提供了實體層多重傳輸速率的選擇,為了能成功解讀接收到的封包,針對不同的傳輸速率有不同的訊號干擾雜訊比(Signal-to-Interference-and-Noise Ratio (SINR))的要求。在802.11的分散式協調功能(DCF)中,二進制指數後退機制 (binary exponential backoff mechanism)在封包傳送失敗時,會將競爭視窗值(contention window)提升二倍,試圖以此減低環境中傳輸行為的擁塞情況;而當封包傳送成功時,又會將競爭視窗(contention window)重新設定回最低的cwmin值,試圖讓無線網路中的傳輸行為變得更為積極。然而傳統的速率調適機制,在降低傳輸速率的同時也將競爭視窗(contention window)做提升二倍的調整;亦或是在提升傳輸速率的同時又將競爭視窗(contention window)重新設回最低值cwmin,而將傳輸速率及競爭視窗(contention window)分別獨立做調整,可能會導致傳送行為變得過於保守或是變得太過於積極,這樣將傳輸速率及競爭視窗(contention window)二個參數分別考慮而做調整會造成不適合的傳送行為而損害無線網路中的吞吐量(throughput)。因此,我們提出了IEEE 802.11多重速率無線網路之加強型參數整合調整策略(Enhanced Adaptation of Link Rate and Contention Window for IEEE 802.11 Multi-rate Wireless Networks,以下簡稱為EARC),EARC的調整策略是將傳輸速率及競爭視窗(contention window)二參數一同納入考慮,再做適度地調整。EARC是閉迴式(closed-loop)的速率調適機制,首先在接收端我們經由觀測環境的能量狀況及接收行為設計建立了速率選擇參考表(rate selection reference (RSR) table),接收端藉由RSR table決定最適合的傳輸速率並以ACK封包夾帶此訊息讓傳送端得以用最適合的傳輸速率傳送封包。若接收端所預估的傳輸速率與目前的傳輸速率相同,接收端進而比較與傳送端之間的平均觀測能量差,同樣以ACK封包夾帶此訊息作為傳送端調整競爭視窗(contention window)的參考。EARC藉由同時考慮傳輸速率及競爭視窗(contention window)二參數值進而再整合做參數調整,能有效提升系統的吞吐量(throughput),在模擬結果中也驗證了此理論。
IEEE 802.11 wireless network supports multiple link rates at the physical layer. Each link rate is associated with a certain required Signal-to-Interference-and-Noise Ratio (SINR) threshold for successfully decoding received packets. On transmission failures, the 802.11 DCF performs a binary exponential backoff mechanism to discourage channel access attempts, hoping to reduce congestion. When traditional link adaptation is applied, both rate reduction and binary backoff represent double penalties for this wireless link, which may cause overly conservative transmission attempts. On the other hand, once transmission succeeds, 802.11 DCF resets the backoff contention window to the minimum value to encourage channel access attempts. At the same time, traditional link adaptation may also decide to increase the data rate, which leads to overly aggressive transmission attempts. We observe this improper interaction of link rate and backoff mechanism that harms the 802.11 system performance, due to separate consideration of those two parameters. In this thesis, we propose to jointly adapt the rate and backoff parameters. Specifically, an Enhanced Adaptation of link Rate and Contention window, abbreviated as EARC, is devised. EARC is a closed-loop (receiver-assisted) link rate adaptation protocol that jointly considers the backoff mechanism. With only one extra byte carried by the DATA packet, EARC incurs little controlling overhead despite its receiver-assisted nature. Moreover, since SINR information commonly utilized by receiver-assisted protocols is not precisely supported in real devices, we introduce a rate selection reference (RSR) table empirically derived by constantly monitoring the environmental energy level and reception behavior. The RSR table then guides the receiver to select the best sustainable rate for the transmitter. Simulation results demonstrate the RSR table is a practical option for making the rate decision, and the proposed EARC approach is effective in maintaining high system throughput, compared to other link adaptation algorithms.
Abstract-Chinese i
Abstract-English ii
Appreciation iii
Contents iv
List of Tables vi
List of Figures vii
1 Background 1
2 Preliminaries 4
2.1 Back-o® Mechanism in 802.11 Standard (BEB) . . . . . . . . . . . . . . . . 4
2.2 Auto-rate Fallback (ARF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Receiver-based Auto-rate (RBAR) . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Adaptation of Link Rate and Contention Window (ARC) . . . . . . . . . . 6
3 Our EARC Protocol 7
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 EARC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.1 optCW Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Receiver Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.3 Transmitter Operations . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Simulation Results 20
4.1 Symmetric Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Asymmetric Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Conclusion 26
Bibliography 27
[1] A. Akella, G. Judd, S. Seshan, and P. Steenkiste. "Self-Management in Chaotic Wireless Deployments". In Proc. ACM MobiCom, Auguest 2005.
[2] F. Cali, M. Conti, and E. Gregori. "Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit". IEEE/ACM Transactions on Networking, 8(6):785-799, December 2000.
[3] C.-C. Chen, H. Luo, E. Seo, N. H. Vaidya, and X. Wang. "Rate-Adaptive Framing for Interfered Wireless Networks". In Proc. IEEE INFOCOM, pages 1325-1333, May 2007.
[4] D.-J. Deng, C.-H. Ke, H.-H. Chen, and Y.-M. Huang. "Contention Window Optimization for IEEE 802.11 DCF Access Control". IEEE Transactions on Wireless Communications, 7(12):5129-5135, December 2008.
[5] G. Hollan, N. Vaidya, and P. Bahl. "A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks". In Proc. ACM MobiCom, pages 236-251, July 2001.
[6] G. Judd and P. Steenkiste. "Using Emulation to Understand and Improve Wireless Networks and Applications". In Proc. USENIX NSDI, May 2005.
[7] A. Kamerman and L. Monteban. "WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band". Bell Labs Technical Journal, 2(2):118-133, 1997.
[8] J. Kim, S. Kim, S. Choi, and D. Qiao. "CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs". In Proc. IEEE INFOCOM, pages 1-11, April 2006.
[9] Y. Kwon, Y. Fang, and H. Latchman. "A Novel MAC Protocol with Fast Collision Resolution for Wireless LANs". In Proc. IEEE INFOCOM, pages 853-862, March 2003.
[10] M. Lacage, M. H. Manshaei, and T. Turletti. "IEEE 802.11 Rate Adaptation: A Practical Approach". In Proc. ACM MSWiM, October 2004.
[11] A.-C. Li, T.-Y. Lin, and C.-Y. Tsai. "ARC: Joint Adaptation of Link Rate and Contention Window for IEEE 802.11 Multi-Rate Wireless Networks". In Proc. IEEE SECON, pages 1-9, June 2009.
[12] T.-Y. Lin and J. C. Hou. "Interplay of Spatial Reuse and SINR-determined Data Rates on CSMA/CA-based, Multi-hop, Multi-rate Wireless Networks". In Proc. IEEE INFOCOM, pages 803-811, May 2007.
[13] D. Qiao and S. Choi. "Fast-Responsive Link Adaptation for IEEE 802.11 WLANs". In Proc. IEEE ICC, pages 3583-3588, May 2005.
[14] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly. "Opportunistic Media Access for Multirate Ad Hoc Networks". In Proc. ACM MobiCom, September 2002.
[15] C. Wang, B. Li, and L. Li. "A New Collision Resolution Mechanism to Enhance the Performance of IEEE 802.11 DCF". IEEE Transactions on Vehicular Technology, 53(4):1235-1246, July 2004.
[16] H.-Y. Wong, H. Yang, S. Lu, and V. Bharghavan. "Robust Rate Adaptation for 802.11 Wireless Networks". In Proc. ACM MobiCom, pages 146-157, September 2006.
[17] Y. Xi, B.-S. Kim, J.-B. Wei, and Q.-Y. Huang. "Adaptive Multirate Auto Rate Fallback Protocol for IEEE 802.11 WLANs". In Proc. IEEE MILCOM, pages 1-7, October 2006.
[18] Q. Xia and M. Hamdi. "Smart Sender: A Practical Rate Adaptation Algorithm for Multirate IEEE 802.11 WLANs". IEEE Transactions on Wireless Communications, 7(5):1764-1775, May 2008.
[19] S.-R. Ye and Y.-C. Tseng. "A Multi-Chain Backo® Mechanism for IEEE 802.11 WLANs". IEEE Transactions on Vehicular Technology, 55(5):1613-1620, September 2006.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top