|
[1] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques, Prentice-Hall, Englewood Cliffs, NJ (1993). [2] G. H. Koopmann and J. B. Fahnline, Designing Quiet Structures, Academic Press, San Diego (1997). [3] M. Brandstein and D. Ward, Microphone Arrays Signal Processing Techniques and Applications, Springer-Verlag, NY (2001). [4] J. Benesty, J. Chen and Y. Huang, Microphone Array Signal Processing, Springer-Verlag, NY (2008). [5] H. L. Van Trees, Optimum Array Processing, Wiley & Sons, Inc., NY (2002). [6] B. A. Cray, V. M. Evora, and A. H. Nuttall, “Highly directional acoustic receivers,” Journal of the Acoustical Society of America, Vol. 113, pp. 1526-1532 (2003). [7] Y. Fan, B. Tysoe, J. Sim, K. Mirkhani, A. N. Sinclair, F. Honarvar, H. Sildva, A. Szecket and R. Hardwick, “Nondestructive evaluation of explosively welded clad rods by resonance acoustic spectroscopy,” Ultrasonics, Vol. 41, pp. 369-375 (2003). [8] M. Duquennoy, M. Ouaftouh and M. Ourak, “Ultrasonic evaluation of stresses in orthotropic materials using Rayleigh waves,” NDT & E International, Vol. 32, pp. 189-199 (1999). [9] V. Murino, “Reconstruction and segmentation of underwater acoustic images combining confidence information in MRF models,” Pattern Recognition, Vol. 34, pp. 981-997 (2001). [10] D. Zha and T. Qiu, “Underwater sources location in non-Gaussian impulsive noise environments,” Digital Signal Processing, Vol. 16, pp. 149-163 (2006). [11] U. Benko, J. Petrovcic, D. Juricic, J. Tavcar, J. Rejec and A. Stefanovska, “Fault diagnosis of a vacuum cleaner motor by means of sound analysis,” Journal of Sound and Vibration, Vol. 276, pp. 781-806 (2004). [12] J. D. Wu and C. Q. Chuang, “Fault diagnosis of internal combustion engines using visual dot patterns of acoustic and vibration signals,” NDT&E International, Vol. 38, pp. 605-614 (2005). [13] B. D. V. Veen, K. M. Buckley, Beamforming: a versatile approach to spatial filtering, IEEE Signal Processing Magazine, Vol.5, pp. 4-24 (1998). [14] H. Krim, M. Viberg, Two decades of array signal processing research, IEEE Signal Processing Magazine, Vol. 13, pp. 67-94 (1996). [15] E. G. Williams and J. D. Maynard, Holographic imaging without the wavelength limit, Physical Review Letters, Vol. 45, pp. 554-557 (1980). [16] M. I. Skolnik, Introduction to Radar Systems, McGraw-Hill, NY, (1980). [17] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989. [18] S. Haykin, Array Signal Processing, Prentice Hall, Englewood Cliffs, NJ, (1985). [19] H. T. Friis and C. B. Feldman, “A multiple unit steerable antenna for short-wave reception,” Bell System Technical Journal, Vol. 16, pp. 337-419 (1937). [20] J. J. Christensen and J. Hald, “Beamforming,” Brüel & Kjær Technical Review No. 1 (2004). [21] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, Vol. 57, pp. 1408-1418 (1969). [22] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, Vol. 34, pp. 276-280 (1986). [23] M. R. Bai and J. W. Lee, Industrial noise identification by using an acoustic beamforming system, ASME, Journal of Sound and Vibration, Vol. 120, pp.426-433 (1998). [24] E. G. Williams, J. D. Maynard and E. Skudrzyk, “Sound source reconstructions using a microphone array,” Journal of the Acoustical Society of America, Vol. 68, pp. 340-344 (1980). [25] M. R. Bai, “Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries,” Journal of the Acoustical Society of America, Vol. 92, pp. 533-549 (1992). [26] B. K. Kim and J. G. Ih, “On the reconstruction of vibro-acoustic field over the surface enclosing an interior space using the boundary element method,” Journal of the Acoustical Society of America, Vol. 100, pp. 3030–3016 (1996). [27] S. C. Kang and J. G. Ih, “Use of non-singular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography,” Journal of the Acoustical Society of America, Vol. 109, pp. 1320-1328 (2001). [28] G. T. Kim and B. H. Lee, ‘‘3-D sound source reconstruction and field reprediction using the Helmholtz integral equation,’’ Journal of Sound and Vibration, Vol. 136, pp. 245–261 (1990). [29] E. G. Williams, B. H. Houston, P. C. Herdic, S. T. Raveendra and B. Gardner, ‘‘Interior near-field acoustical holography in flight," Journal of the Acoustical Society of America, Vol. 108, pp. 1451-1463 (2000). [30] Z. Zhang, N. Vlahopoulos, S. T. Raveendra, T. Allen and K. Y. Zhang, ‘‘A computational acoustic field reconstruction process based on an indirect boundary element formulation,’’ Journal of the Acoustical Society of America, Vol. 108, pp. 2167–2178 (2000). [31] Z. Zhang, N. Vlahopoulos, T. Allen and K. Y. Zhang, ‘‘A source reconstruction process based on an indirect variational boundary element formulation,’’ Engineering Analysis with Boundary Elements, Vol. 25, 93–114 (2001). [32] A. Schuhmacher, J. Hald, K. B. Rasmussen and P. C. Hansen, ‘‘Sound source reconstruction using inverse boundary element calculations,’’ Journal of the Acoustical Society of America, Vol. 113, pp. 114–126 (2003). [33] Z. Wang and S. F. Wu, “Helmholtz equation-least-squares method for reconstruction the acoustic pressure field,” Journal of the Acoustical Society of America, Vol. 102, pp. 2020–2032 (1997). [34] S. F. Wu, “On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method,” Journal of the Acoustical Society of America, Vol. 107, pp. 2511-2522 (2000). [35] N. E. Rayess, Development of Acoustic Holography Using the Helmholtz Equation-Least Squares (HELS) Method, Ph.D. thesis, Department of Mechanical Engineering, Wayne State University, pp. 65–77 (2001). [36] M. Moondra and S. F. Wu, “Visualization of vehicle interior sound field using HELS based NAH,” Noise Control Engineering Journal, Vol. 53, pp. 146–154 (2005). [37] M. Ochmann, “The source simulation technique for acoustic radiation problems,” Acustica, Vol. 81, pp. 512–527 (1995). [38] M. E. Johnson, S. J. Elliott, K-H. Baek, and J. Garcia-Bonito, “An equivalent source technique for calculating the sound field inside an enclosure containing scattering objects,” Journal of the Acoustical Society of America, Vol. 104, pp. 1221–1231 (1998). [39] I. Y. Jeon and J. G. Ih, “On the holographic reconstruction of vibroacoustic fields using equivalent sources and inverse boundary element method,” Journal of the Acoustical Society of America, Vol. 118, pp. 3475–3484 (2005). [40] A. Sarkissian, “Extension of measurement surface in near-field acoustic holography,” Journal of the Acoustical Society of America, Vol. 115, pp. 1593–1596 (2004). [41] A. Sarkissian, “Method of superposition applied to patch near-field acoustic holography,” Journal of the Acoustical Society of America, Vol. 118, pp. 671–678 (2005). [42] M. Ochmann and R. Piscoya, “The source simulation technique with complex source points for computing acoustic radiation problems,” The thirteenth International Congress on Sound and Vibration, Vienna, Austria (2006). [43] M. R. Bai and J. H. Lin, “Source identification system based on the time-domain nearfield equivalence source imaging: fundamental theory and implementation,” Journal of Sound and Vibration, Vol. 307, pp. 202–225 (2007). [44] M. R. Bai, J. H. Lin and K. L. Liu, “Optimized microphone deployment for near-field acoustic holography: To be, or not to be random, that is the question,” Journal of Sound and Vibration, Vol. 329, pp. 2809-2824 (2010). [45] M. R. Bai, J. H. Lin and C. W. Tseng, “Implementation issues of the nearfield equivalent source imaging microphone array,” Journal of Sound and Vibration, Vol. 330, pp. 545-558 (2011). [46] G. H. Koopmann, L. Song and J. B. Fahnline, “A method for computing acoustic fields based on the principle of wave superposition”, Journal of the Acoustical Society of America, Vol. 86, pp. 2433-2438 (1989). [47] L. Song, G. H. Koopmann and J. B. Fahnline, “Numerical errors associated with the method of superposition for computing acoustic fields,” Journal of the Acoustical Society of America, Vol. 89, pp. 2626-2633 (1991). [48] J. B. Fahnline and G. H. Koopmann, “A numerical solution for the general radiation problem based on the combined methods of superposition and singular-value decomposition,” Journal of the Acoustical Society of America, Vol. 90, pp. 2808–2819 (1991). [49] N. P. Valdivia and E. G. Williams, “Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography,” Journal of the Acoustical Society of America, Vol. 120, pp. 3694-3705 (2006). [50] J. N. Juang, Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ (1994). [51] E. G. Williams, “The nearfield acoustic holography (NAH) experimental method applied to vibration and radiation in light and heavy fluids,” Computers & Structures, Vol. 65, pp. 323-335 (1997). [52] E. G. Williams and B. H. Houston, “Fast Fourier transform and singular value decomposition formulations for patch nearfield acoustical holography,” Journal of the Acoustical Society of America, Vol. 114, pp. 1322-1333 (2003). [53] J. H. Zhang and B. Han, “Analysis of engine front noise using sound intensity techniques,” Mechanical Systems and Signal, Vol. 19, pp. 213-221 (2005). [54] J. Hald, “STSF – a unique technique for scan-based nearfield acoustic holography without restriction of coherence,” Brüel & Kjær Technical Review No.1 (1989) [55] J. Hald, “STSF – practical instrumentation and application,” Brüel & Kjær Technical Review No.2 (1989). [56] J. Hald, “Non-stationary STSF,” Brüel & Kjær Technical Review No.1 (2000). [57] E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustica Holography, Academic Press, San Diego, CA (1999). [58] M. A. Rowell and D. J. Oldham, “Determination of the directivity of a planar noise source by means of near field acoustical holography, 1: theoretical background,” Journal of Sound and Vibration, Vol. 180, pp. 99-118 (1995). [59] W. A. Veronesi and J. D. Maynard, “Digital holographic reconstruction of sources with arbitrarily shaped surface,” Journal of the Acoustical Society of America, Vol. 85, pp. 588-598 (1988). [60] G. V. Borgiotti, A. Sarkissian, E. G. Williams, L. Schuetz, “Conformal generalized near-field acoustic holography for axisymmetric geometries,” Journal of the Acoustical Society of America, Vol. 88, pp. 199–209 (1990). [61] J. Hald, Combined NAH and beamforming using the same array, Brüel & Kjær Technical Review No. 1, 2005. [62] S. F. Wu, “Methods for reconstructing acoustic quantities based on acoustic pressure measurements,” Journal of the Acoustical Society of America, Vol. 124, pp. 2680-2697 (2008). [63] R. P. Brent, Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Cliffs, NJ (1973). [64] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, NY (1979). [65] S. Kirkpatrick, C. D. Gelatt, C. D. Jr, and M. P. Vecchi, “Optimization by simulated annealing,” Science, Vol. 220 (4598), pp.671-680 (1983). [66] R. T. Eduardo, J. K. Hao and T. J. Jose, “An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem,” Computer and Operation Research, Vol. 35, pp. 3331-3346 (2008). [67] B. Franco, Simulated annealing overview, http://www.geocities.com/ francorbusetti/saweb.pdf (last viewed on June 22, 2009). [68] V. Murino, A. Trucco, and C. S. Regazzoni, ”Synthesis of unequally spaced arrays by simulated annealing,” IEEE Transactions Signal Processing, Vol. 44, pp.119–123 (1996). [69] S. L. Gay and J. Benesty, Acoustic signal processing for telecommunication, Kluwer Academic Publishers (2000). [70] H. Teutsch and G.W. Elko, “First- and Second-order adaptive differential microphone arrays,” Seventh International Workshop on Acoustic Echo and Noise Control, Darmstadt (2001). [71] H. Song and J. Liu, “First-Order Differential Microphone Array for Robust Speech Enhancement,” Language and Image Processing, pp. 1461 - 1466 (2008). [72] H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, Vol. 19, pp. 716-723 (1974). [73] M. C. Junger and D. Feit, “Sound, Structures, and their Interaction,” MIT Press, pp.86-112 (1986). [74] P. A. Nelson and S. H. Yoon, “Estimation of acoustic source strength by inverse methods: part I, conditioning of the inverse problem,” Journal of Sound and Vibration, Vol. 233, pp. 643-668 (2000). [75] B. Nobel, J.W. Daniel, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ (1988). [76] O. Kirkeby, P. A. Nelson, and H. Hamada, “Fast deconvolution of multichannel systems using regularization,” IEEE Transactions on Speech Audio Processing, Vol. 6, pp. 189-194 (1998). [77] M. R. Bai, C. W. Tung and C. C. Lee, “Optimal design of loudspeaker arrays for robust cross-talk cancellation using the Taguchi method and the genetic algorithm,” Journal of the Acoustical Society of America, Vol. 117, pp. 2802-2813 (2005). [78] P. C. Hansen, Rank-Decient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM (1997). [79] G. Wahba, Spline Models of Observational Data, SIAM, Philadelphia (1990). [80] P. C. Hansen and D. P. Oleary, “The use of the L-curve in the regularization of discrete iii-posed problem,” SIAM Journal on Scientific Computing, Vol. 14, pp. 1487-1503 (1993) [81] J. Gomes, J. Hald, P. Juhl and F. Jacobsen, 2009, “On the Applicability of the Spherical Wave Expansion with a Single Origin for Near-Field Acoustical Holography,” Journal of the Acoustical Society of America, Vol. 125, pp. 1529-1537 (2009). [82] National Instruments Corporation, PCI Extensions for Instrumentation (PXI), http://www.ni.com/ (last viewed on 15 November 2008) [83] M. R. Bai, K. N. Hur and Y. T. Liu, “Speech enhancement using an equivalent source inverse filtering -based microphone array,” Journal of the Acoustical Society of America, Vol. 127, pp. 1373-1380 (2010). [84] M. R. Bai and K. Y. Ou , “Synthesis of room responses using virtual source representation with application in reverberator design,” Journal of the Audio Engineering Society, Vol. 53, pp. 297-306 (2005). [85] M. R. Bai and T. C. Tsao, “Numerical modeling of head related transfer functions using the boundary source representation,” American Society of Mechanical Engineers/ Journal of Vibration and Acoustics, Vol. 128, pp. 594 – 603 (2006).
|