跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐暐能
研究生(外文):Hsu, Wei-Neng
論文名稱:利用滑動電弧電漿輔助觸媒將含乙醇水氣重組之初步研究
論文名稱(外文):Preliminary Study of Gliding Arc Plasma Assisted Catalytic Ethanol Steam Reforming
指導教授:吳宗信吳宗信引用關係
指導教授(外文):Wu, Jong-Shinn
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:68
中文關鍵詞:滑動電弧電漿重組產氫
外文關鍵詞:gliding arcplasmahydrogen reforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本實驗係探討利用大氣電漿輔助觸媒經過自熱反應的方式重組原料並進行產生氫氣之研究。利用脈衝電漿產生滑動電弧電漿,電漿氣體為空氣、水和乙醇的混合,並操作在一大氣壓的條件下產生電漿。期望以電漿氣體高能量的特性,幫助前處理重組燃料,以提高利用觸媒產生氫氣的效率。本實驗首先分開探討觸媒產氫與滑動電弧產氫。在觸媒產氫的實驗之中,透過交通大學應用化學研究所李積琛老師及其學生協助觸媒(5 wt% Rh/CeO2)的製備,並著手探討實驗參數對效率之影響。藉由調整實驗參數達到效果最佳化,其中在低空氣流量1.0 SLM、0.7 碳氧原子比、反應氣體溫度160 ℃之條件下,最佳化的氫氣選擇比115.03%,一氧化碳選擇比66.02%,轉換率100%而效率為63%,另外,在滑動電弧電漿產氫研究中,藉由調整空氣流量、碳氧原子比和輸入功率,來達到產氫效率最佳化。滑動電弧產氫的最佳效率及其參數如下:在較高空氣流量1.5 SLM、0.7碳氧原子比、反應氣體溫度160 ℃和223瓦功率輸入之下可達到氫氣選擇比42.50%¼Œ一氧化碳選擇比68.79%,轉換率39%而效率為8%。
最後結合電漿輔助觸媒(5 wt% Rh/CeO2)產氫,在高流量下電漿可確實提升產氫效果(在空氣流量1.5 SLM、0.7 碳氧原子比、反應氣體溫度160 ℃之條件下,之下,觸媒產氫的效果降低許多: 氫氣選擇比78.65%,一氧化碳選擇比61.27%,轉換率97%而效率為48%),電漿輔助觸媒在1.5 SLM 空氣流量、0.7 碳氧原子比、反應氣體溫度160 ℃、223瓦的功率輸出之下可達到111.20%氫氣選擇比、65.52%一氧化碳選擇比、100%轉換率,效率為58%。由以上實驗研究可知,大氣滑動電弧電漿輔助觸媒產氫相當有潛力。

In this study, the gliding arc non-thermal plasma would assist catalyst reforming ethanol into hydrogen through auto-thermal reaction. The plasma discharge gas containing high energy state ions and metastable species which may break the fuel into smaller gas molecular to assist catalyst reforming. At first, catalyst reforming and gliding arc plasma have been separately studied. On one hand, 5 wt% Rh/CeO2 catalyst reforming has optimized 115.03 % hydrogen selectivity, 66.02 % carbon monoxide selectivity, 100 % conversion rate and 63 % efficiency under 1.0 SLM air flow rate, C/O ratio 0.7 and gas temperature 160 ℃. On the other hand, the optimized plasma-alone reforming results were 42.50 % hydrogen selectivity, 68.79 % carbon monoxide selectivity, 39 % conversion rate and 8 % reforming efficiency under 1.5 SLM air flow rate, C/O ratio 0.7, gas temperature 160 ℃ and plasma absorption power 223 W.
Finally, the PAC reforming experiments were conducted at 1.5 SLM air flow rate (Under 1.5 SLM air flow rate, C/O ratio 0.7 and gas temperature 160 ℃, the catalyst reforming was 78.65 % hydrogen selectivity, 61.27 % carbon monoxide selectivity, 97 % conversion rate and 48 % efficiency), C/O 0.7, plasma absorption power 223 W and gas temperature 160 ℃ and reforming results were 111.20 % hydrogen selectivity, 65.52 % carbon monoxide selectivity, 100 % conversion rate and 58 % efficiency. In summary, the gliding arc plasma assisted catalyst (5 wt% Rh/CeO¬2) reforming is regarding as a promising technology.
摘要 I
ABSTRACT III
誌謝 V
TABLE OF CONTENTS VI
LIST OF TABLES VIII
LIST OF FIGURES IX
NOMENCLATURE XI
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND AND MOTIVATION 1
1.1.1 Advantages of Hydrogen Energy 1
1.1.2 Disadvantages of Traditional Reforming Technologies 2
1.1.3 Plasma Assisted Reforming Technologies 4
1.1.4 Classification of Plasma Sources 5
1.1.5 Comparison between Methane and Ethanol as the Reforming Fuel 7
1.1.6 Literature Surveys of Gliding Arc 9
1.1.6.1 Plasma Power Input Types 9
1.1.6.2 Geometry and Electrode Design Consideration 9
1.1.6.3 Experimental Measurements 10
1.1.6.4 Conversion Rate and Efficiency 11
1.2 SPECIFIC OBJECTIVES OF THE THESIS 13
CHAPTER 2 RESEARCH METHODS AND PROCEDURES 15
2.1 EXPERIMENTAL FACILITY AND INSTRUMENTS 15
2.1.1 Plasma Reactor 15
2.1.2 AC Power Supply 15
2.1.3 Fuel Feeding System 16
2.1.4 Heating System 16
2.1.5 Catalyst Preparation 17
2.1.6 Experimental Instrumentations 18
2.2 EXPERIMENTAL METHODS AND TEST CONDITIONS 19
2.2.1 Experimental Methods 19
2.2.2 Test Conditions 20
CHAPTER 3 RESULTS AND DISCUSSION 21
3.1 CATALYST REFORMING 21
3.2 PLASMA REFORMING 22
3.2.1 Visual Observation of Gliding Arc 22
3.2.2 Electrical Characterization of Gliding Arc 24
3.2.3 Plasma Reforming Efficiency 25
3.2.3.1 Effect of Gas Flow Rate 26
3.2.3.2 Effect of Carbon to Oxygen Ratio 27
3.2.3.3 Effect of Residence Time 28
3.2.3.4 Effect of Input Plasma Power 29
3.3 PLASMA ASSISTED CATALYST (PAC) REFORMING 30
3.3.1 Comparison between Plasma, Catalyst and PAC Reforming 30
CHAPTER 4 CONCLUSION AND FUTURE WORK 32
4.1 SUMMARY 32
4.2 RECOMMENDATION OF FUTURE WORK 33
REFERENCES 34
REFERENCES
[1] Batista, M.S., Santos, R.K.S., Assaf, E.M., Assaf, J.M., and Ticianelli, E.A., ‘‘High efficiency steam reforming of ethanol by cobalt-based catalysts’’, Journal of Power Sources, 134, 27-32, 2004.
[2] Bo, Z., Yan, J.H., Li, X.D., Chi, Y., and Cen, K.F., ‘‘ Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition’’, JOURNAL OF HAZARDOUS MATERIALS,Vol.155, No.3, pp.494-501.
[3] Bo, Z., Yan, J.H., Li, X.D., Chi, Y., Cheron, B., and Cen, K.F., ‘‘The dependence of gliding are gas discharge characteristics on reactor geometrical configuration’’, PLASMA CHEMISTRY AND PLASMA PROCESSING, Vol.27, No.6, pp.691-700, 2007.
[4] Bo, Z., Yan, J.H., Li, X.D., et al. ‘‘Plasma assisted dry methane reforming using gliding arc gas discharge: Effect of feed gases proportion’’, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, Vol.33, No.20, pp.5545-5553, 2008.
[5] Cavallaro, S., Chiodo, V., Freni, S., Mondello, N., and Frusteri, F., ‘‘Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC’’, Applied Catalysis A: General, 249, 119-128, 2003.
[6] Chao, Y., Huang, C.T., Lee, H.M., and Chang, M.B., ‘‘ Hydrogen production via partial oxidation of methane with plasma-assisted catalysis’’, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, Vol.33, No.2, pp.644-671, 2008.
[7] Chen, H.L., Lee, H.M., Chen, S.H., et al., ‘‘ Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects’’, APPLIED CATALYSIS B-ENVIRONMENTAL,Vol.85, No.1-2, pp.1-9, 2008.
[8] Cohn, D.R., Rabinovich, A., Titus, C.H., and Bromberg, L., Int. J. Hydrogen Energy, 22, 715–723, 1997.
[9] Comas, J., Marino, F., Laborde, M., and Amadeo, N., ‘‘Bio-ethanol steam reforming on Ni/Al2O3 catalyst’’, Chem Eng Journal, 98, 61-68, 2004.
[10] Diagne, C., Idriss, H., and Kiennemann, A., ‘‘Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts, Catalysis Communications’’, 3, 565-571, 2002.
[11] Erdohelyi, A., Rasko, J., Kecskes, T., Toth, M., Domok, M., and Baan, K., ‘‘Hydrogen formation in ethanol reforming o n supported noble metal catalysts’’, Catalysis Today, 116, 367-376, 2006.
[12] Fatsikostas, A.N., et al., ‘‘Reaction network of steam reforming of ethanol over Ni-based catalysts’’, Journal of Catalysis, 225, pp. 439-452, 2004.
[13] Fields, S., ‘‘Hydrogen for Fuel Cells: Making the Best of Biomass’’, Environ., Health Perspect., 111 (1), A38-A41, 2003.
[14] Fouhy, K., and Ondrey, G., Chem Eng, 103, 46–47, 1996.
[15] Frusteri, F., Freni, S., Chiodo, V., Spadaro, L., Di Blasi, O., Bonura, G., and Cavallaro, S., ‘‘Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell’’, Applied Catalysis A: General, 270, 1-7, 2004.
[16] Frusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., and Cavallaro, S., ‘‘H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts”, Catalysis Communications, 5, 611-615, 2004.
[17] G. Petitpas, J.D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, and L.Fulcheri, ‘‘A comparative study of non-thermal plasma assisted reforming technologies’’, International Journal of Hydrogen Energy, Vol. 32, No.14, pp.2848-2867, 2007.
[18] Kalra, C.S., Cho, Y.I., Gutsol, A., Fridman, A., and Rufael, T.S., ‘‘Gliding arc in tornado using a reverse vortex flow’’, REVIEW OF SCIENTIFIC INSTRUMENTS, Vol. 99, No.2, 025110, 2005.
[19] Kalra, C.S., Cho, Y.I., Gutsol, A., Fridman, A., and Rufael, T.S., ‘‘Non-Thermal Plasma Catalytic Conversion of Methane to Syn-Gas’’, ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, Vol.228, No.1, pp.U687-U687, 2004.
[20] Kalra, C. S., Kossitsyn, M., Iskenderova, K., Chirokov, A., Cho, Y. I., Gutsol, A., and Fridman, A., Electronic Proceedings of the 16th International Symposium on Plasma Chemistry, Taormina, Italy, pp.22–27, 2003.
[21] Kalra, C.S., Gutsol, A.F., and Fridman, A.A., ‘‘Gliding arc discharges as a source of intermediate plasma for methane partial oxidation’’, IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol.33, No.1, pp.32-4, 2005.
[22] Kusano, Y., Teodoru, S., Leipold, F., et al., ‘‘Gliding arc discharge - Application for adhesion improvement of fibre reinforced polyester composites’’, SURFACE & COATINGS TECHNOLOGY, Vol.202, No.22-23, pp.5579-5582, 2008.
[23] Kuznetsova I.V., Kalashnikov N.Y., Gutsol A.F., Fridman A.A., and Kennedy L.A. ‘‘Effect of "overshooting" in the transitional regimes of the low-current gliding arc discharge’’, JOURNAL OF APPLIED PHYSICS, Vol.92, No.8, pp.4231-4237, 2002.
[24] L. Bromberg, D.R. Cohn, A. Rabinovich, N. Alexeev, A. Samokhin, K. Hadidi, J. Palaia, and N. Margarit-Bel, ‘‘Onboard Plasmatron Hydrogen Production for Improved Vehicles’’, PSFC JA-06-3, 2006.
[25] Liguras, D.K., Kondarides, D.I., and Verykios, X.E., ‘‘Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts’’, Applied Catalysis B: Environmental, 43, 345-354, 2003.
[26] Llorca, J., Homs, N., Sales, J., Fierro, J.L.G., and Piscina, P.R., ‘‘Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol’’, Journal of Catalysis, 222, 470-480, 2004.
[27] Llorca, J., Piscina, P.R., Dalmon, J.A., Sales, J., and Homs, N., ‘‘CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of the metallic precursor’’, Applied Catalysis B: Environmental, 43, 355-369, 2003.
[28] Mutaf-Yardimci, O., Saveliev, A.V., Fridman, A.A., and Kennedy, L.A., ‘‘Thermal and non-thermal regimes of gliding arc discharge in air flow’’, JOURNAL OF APPLIED PHYSICS, Vol.87, No.4, pp.1632-1641, 2000.
[29] Shiki, H., Motoki, J., Ito, Y., et al. ‘‘Development of split gliding arc for surface treatment of conductive material’’, THIN SOLID FILMS, Vol.516, No.11, pp.3684-3689, 2008.
[30] Sun, J., Qiu, X.P., Wu, F., and Zhu, W.T., ‘‘H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application’’, Int. J. Hydrogen Energy , 30, 437-445, 2005.
[31] Vizcaino, A.J., Carrero, A., and Calles, J.A., ‘‘Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts’’, Int. J. Hydrogen Energy, 32, 1450-1461, 2007.
[32] Wang, J.H., Lee, C.S., and Lin, M.C., ‘‘Mechanism of Ethanol Reforming: Theoretical Foundations’’, JOURNAL OF PHYSICAL CHEMISTRY C, Vol.113, No.16, pp. 6681-6688, 2009.
[33] Yang Y.C., Lee B.J., and Chun Y.N., ‘‘Characteristics of methane reforming using gliding arc reactor’’, ENERGY, Vol.34, No. 2, pp. 172-177, 2009.
[34] Yang, Y., Ma, J., and Wu, F., ‘‘Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst’’, Int. J. Hydrogen Energy, 31, 877-882, 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top