參 考 文 獻
[1] Addessi, D., Lacarbonara, and W., Paolone, A., “Free in-plane vibrations of highly buckled beams carrying a lumped mass” Acta Mechanica - ACTA MECH, Vol. 180, No. 1-4?z pp. 133– 156, 2005.
[2] Bathe, K. J., “Finite element procedures” Prentice-Hall, New Jersey, 1996.
[3] Battini, J.-M., Pacoste, C., and Eriksson, A., “Improved minimal augmentation procedure for the direct computation of critical points” Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 16-18, pp. 2169–2185, 2003.
[4] Buchaillot, L., Millet, O., Quevy, E., and Collard?z D., “Post-buckling dynamic behavior of self-assembled 3D microstructures” Microsystem Technologies?z Vol. 14?z No. 1?z pp. 69-78?z 2007.
[5] Casals-Terre, J., and Shkel, A. M., “Snap-action bistable micromechanism actuated by nonlinear resonance” IEEE Sensors (IEEE Cat. No.05CH37665C)?z pp. 893–896, 2005.
[6] Casals-Terre, J., Fargas-Marques, A., and Shkel, A. M., “Snap-action bistable micromechanisms actuated by nonlinear resonance” Journal of Microelectromechanical Systems, Vol. 17, No. 5?z pp. 1082– 1093, 2008.
[7] Chen, H. H., Lin, W. Y., and Hsiao, K. M., “Co-rotational finite element formulation for thin-walled beams with generic open section” Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 2334-2370, 2006.
[8] Chung, T. J., “Continuous Mechanics” Prentice Hall, Englewood Cliff, New Jersey, 1988.
[9] Crisfield, M. A., “A consistent corotational formulation for nonlinear, 3-dimensional, beam-elements” Computer Methods in Applied Mechanics and Engineering, Vol. 81, No. 2, pp. 131–150, 1990.
[10] Dawe, D. J., “Matrix and finite element displacement analysis of structures” Oxford University, New York, 1984.
[11] Emam, S. A., “A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams” PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2002.
[12] Eriksson, A., “Fold lines for sensitivity analyses in structural instability” Computer Methods in Applied Mechanics and Engineering, Vol. 114, No. 1-2, pp. 77–101, 1994.
[13] Eriksson, A., “Structural instability analyses based on generalised path-following” Computer Methods in Applied Mechanics and Engineering, Vol. 156, No. 1-4, pp. 45–74, 1998.
[14] Eriksson, A., Pacoste, C., and Zdunek, A., “Numerical analysis of complex instability behaviour using incremental-iterative strategies” Computer Methods in Applied Mechanics and Engineering, Vol. 179, No. 3-4, pp. 265–305, 1999.
[15] Fang, W., and Wickert, J. A., “Post buckling of micromachined beams” Journal of Micromechanics and Microengineering, Vol. 4, No. 3, pp. 116–122, 1994.
[16] Fried, I., "Orthogonal Trajectory Accession to the Nonlinear Equilibrium Curve", Computer Methods in Applied Mechanics and Engineering, Vol. 47, pp. 283-297, 1984.
[17] Fujii, F., and Noguchi, H., “The buckling mode extracted from The LDLT-decomposed large-order stiffness matrix” Communications in Numerical Methods in Engineering, Vol. 18, No. 7, pp. 459–467, 2002.
[18] Gerson, Y., Krylov, S., Ilic, B., and Schreiber, D., Large displacement low voltage multistable micro actuator”21st IEEE International Conference on Micro Electro Mechanical Systems ( MEMS 2008?z), pp. 463–466, 2008.
[19] Heijden, G. H. M., Neukirch, S., Goss, V. G. A., and Thompson, J. M. T., “Instability and self-contact phenomena in the writhing of clamped rods.” International Journal of Mechanical Sciences, Vol. 45, pp. 161-191, 2003.
[20] Helvajian, H., “Microengineering Aerospace Systems” chapter 1 in Microengineering for Aerospace Systems, ed. ISBN 1-884989-03-9, Aerospace Press, El Segundo, CA, and AIAA, Reston, VA, 1999.
[21] Hibbeler, R. C., “Mechanics of Material” Prentice Hall, Eighth edition, 2011.
[22] Hsiao, K. M. and Hou, F. Y., “Nonlinear finite-element analysis of elastic frames” Computers & Structures, Vol. 26, No. 4, pp. 693–701, 1987.
[23] Hsiao, K. M., and Jang, J. Y., “Nonlinear dynamic analysis of elastic frames” Computers & Structures, Vol. 33, No. 4, pp. 1057–1063, 1989.
[24] Hsiao, K. M., and Jang, J. Y., “Dynamic analysis of planar flexible mechanisms by corotational formulation” Computer Methods in Applied Mechanics and Engineering, Vol. 87, No. 1, pp. 1–14, 1991.
[25] Hsiao, K. M., “Corotational total lagrangian formulation for 3-dimensional beam element” AIAA Journal, Vol. 30, No. 3, pp. 797–804, 1992.
[26] Hsiao, K. M., Yang, R. T., and Lee, A. C., “A consistent finite element formulation for non-linear dynamic analysis of planar beam” International Journal for Numerical Methods in Engineering, Vol. 37, No. 1, pp. 75–89, 1994.
[27] Nayfeh, A. H., Kreider, W., and Anderson, T. J., “Investigation of natural frequencies and mode shapes of buckled beams.” AIAA Journal, Vol. 33, No. 6, pp. 1121–1126, 1995.
[28] Nayfeh, A. H., and Emam, S. A., “Exact solution and stability of postbuckling configurations of beams” Nonlinear Dynamics, Vol. 54, No. 4?z pp. 395–408 , 2008.
[29] Noguchi, H., and Fujii, F., “Eigenvector-free indicator, pinpointing and branch-switching for bifurcation” Communications in Numerical Methods in Engineering, Vol. 19, No. 6, pp. 445–457, 2003.
[30] Parente, E., de Holanda, A. S., and Afonso da Silva, S. M. B., “Tracing nonlinear equilibrium paths of structures subjected to thermal loading” Computational Mechanics, Vol. 38, No. 6, pp. 505–520, 2006.
[31] Park, S., and Hah, D., “Pre-shaped buckled-beam actuators: Theory and experiments” Sensors and Actuators A: Physical, Vol. 148, No. 1, pp. 186–192, 2008.
[32] Patricio, P., Adda-Bedia, M., and Ben Amar, M., “An elastica problem: instabilities of an elastic arch” Physica D: Nonlinear Phenomena, Vol. 124, pp. 285–295, 1998.
[33] Pippard, A. B., “The elastic arch and its modes of instability” European Journal of Physics, Vol. 11, pp. 359–365, 1990.
[34] Poon, W. Y., Ng, C. F., and Lee, Y. Y., “Dynamic stability of a curved beam under sinusoidal loading” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering?z Vol. 216?z No. G4?z pp. 209-217?z 2002.
[35] Qiu, J., Lang, J. H., and Slocum, A. H., “A curved-beam bistable mechanism” Journal of Microelectromechanical Systems, Vol. 13, No. 2?z pp. 137– 146, 2004.
[36] Qu?臀y?z E., Buchaillot, L., Bigotte, P., and Collard, D., “self-assembling and actuation of electrostatic micro-mirrors”, European Solid-State Device Research Conference (ESSDERC 2000), pp. 412–415, 2000.
[37] Qu?臀y?z E., Buchaillot, L., and Collard, D., “3-D self-assembling and actuation of electrostatic microstructures” Electron Devices, IEEE Transactions on, Vol. 48, No. 8, 34pp. 1833–1839, Aug. 2001.
[38] Qu?臀y?z E., Buchaillot, L., Bigotte, P., and Collard, D., “Large stroke actuation of continuous membrane for adaptive optics by 3D self-assembled microplates” Sensors and Actuators A: Physical?z Vol. 95?z No. 2?z pp. 183-195?z 2002.
[39] Rao, S. S., “Mechanical Vibrations, Third Edition” Addision-Wesley, 1995.
[40] Rossiter, J., Stoimenov, B., and Mukai, T., “A bistable artificial muscle actuator” 2006 IEEE International Symposium on Micro- NanoMechatronics and Human Science (IEEE Cat. No. 06TH8922C) pp. 35-40, 2006.
[41] Samuel, B. A., Desai, A. V., and Haque, M. A., “Design and modeling of a MEMS pico-Newton loading/sensing device” Sensors and Actuators A: Physical, Vol. 127, No. 1, pp. 155-162, 2006.
[42] Tsai, M. H., Chang, C. W., and Hsiao, K. M., “Nonlinear analysis of planar beams under displacement loading” The First South-East European Conference on Computational Mechanics, SEECCM-06, Kragujevac, Serbia and Montenegro, 2006.
[43] Tseng, W. Y., and Dugundji, J., “Nonlinear vibrations of a buckled beam under harmonic excitation” ASME Journal of Applied Mechanics?z Vol. 38?z No. 2?z pp. 467-476?z 1971.
[44] Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., and Cui, W., “Nonlinear dynamics of mems arches under harmonic electrostatic actuation” Journal of Microelectromechanical Systems, Vol. 19, No. 3?z pp. 647–656, 2010.
[45] Yuh, J., and Young, T., “Dynamic modeling of an axially moving beam in rotation: simulation and experiment”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 113, pp. 34-40, 1991.
[46] 黃智傑, “旋轉三維Timoshenko梁之振動分析” 國立交通大學機械工程學系, 碩士論文, 台灣, 新竹, 2001