跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 10:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明旭
研究生(外文):Tsai, Ming-hsu
論文名稱:挫屈梁在側向負荷下的幾何非線性分析
論文名稱(外文):Geometrical nonlinear analysis of buckled beams under lateral loadings
指導教授:蕭國模
指導教授(外文):Hsiao, Kuo-Mo
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:138
中文關鍵詞:挫屈梁有限元素法幾何非線性
外文關鍵詞:buckled beamfinite elementgeometrical nonlinear
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
挫屈梁在本文中指的是一細長直梁受到超過其臨界端點軸向壓縮位移形成,本研究的第一個目的是探討挫屈梁的初始變形與自然振動,第二個研究目的是探討雙端拱起固定角度的挫屈梁受到側向負荷時的幾何非線性行為,本文中使用方法的是共旋轉有限元素法與數值程序。
本文利用非線性梁理論的一致線性化、d’Alembert原理和虛功原理在當前的元素座標上推導梁元素的節點變形力和節點慣性力,為了考慮軸向與側向變形間的耦合,在推導內力時保留至應變的二次項,將元素節點內力對元素節點變形參數與節點加速度微分,即可得到元素切線剛度矩陣與質量矩陣。
將挫屈梁的系統運動方程式用泰勒級數在穩態變形的位置展開,取到一次項,即為線性振動的運動方程式。
本文使用基於弧長法和牛頓-拉福森法的增量迭代法解非線性平衡方式,探討不同細長比之挫屈梁在不同端點壓縮位移的初始變形,同時以子空間迭代法求得挫屈梁的自然振動頻率與其對應的振動模態,本文使用在平衡方程式中增加臨界條件的延伸系統來追蹤在不同軸向壓縮與不同雙端拱起角度下的挫屈梁受到側向負荷的臨界點的摺線,並以二分法求摺線的轉折點,來分析不同邊界條件下各種臨界點發生的門檻。

The buckled beam considered here is a slender and originally straight beam compressed axially beyond the critical buckling axial displacement. The first objective of this paper is to investigate the deformed configuration and free vibration of the buckled beam. The second objective of this paper is to investigate the geometrically nonlinear behavior of clamped buckled beams with both ends fixed at an adjustable angle subjected to lateral load. The co-rotational finite element formulation is used here. A numerical procedure is proposed here.
The element deformation nodal forces and inertia nodal forces are systematically derived by consistent linearization of the fully geometrically non-linear beam theory using the d'Alembert principle and the virtual work principle in the current rotating element coordinates. In this paper the terms up to the second order of deformation parameters and their spatial derivatives are retained in element nodal forces. The element tangent stiffness matrix and mass matrix may be obtained by differentiating the element nodal force vector with respect to the element nodal parameters and their second time derivative, respectively.
  The governing equations for linear vibration are obtained by the first order Taylor series expansion of the equation of motion at the static equilibrium position of the buckled beam.
  An incremental-iterative method based on the Newton-Raphson method combined with constant arc length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations to investigate the post-buckling configuration of clamped beams with different slenderness ratios under different axial compression. The subspace iterative method is used here to find the natural frequencies and its corresponding vibration mod of buckling beam. An extended system generated by augmenting equilibrium equations with a criticality condition is employed to trace the fold lines of the critical points for the buckling beams with different axial compression and adjustable angle subjected to a lateral load. The threshold of the initial lateral deflection for the existence of the critical point is determined by the bisection method.

目 錄

中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
圖目錄 VIII
第一章 導論 1
第二章 理論推導 6
2.1基本假設 6
2.2座標系統描述 6
2.3梁元素的變形描述 7
2.4梁元素的節點內力 13
2.5元素的剛度矩陣 19
2.6元素的質量矩陣 20
2.7系統平衡方程式 21
第三章 數值方法及程序 22
3.1數值方法 23
3.2數值程序 31
第四章 挫屈梁的初始變形及自由振動分析 37
4.1挫屈梁的初始變形 38
4.2挫屈梁的自然振動頻率及振態 42
第五章 挫屈梁受側向負荷之幾何非線性分析 46
5.1挫屈梁受集中負荷之非線性分析 46
5.2挫屈梁受集中力矩之非線性分析 49
第六章 彈性固端曲梁受中點側力的穩定性分析 51
6.1曲梁之初形與其受側向負載負載的無因次化分析 53
6.2受中點側力之曲梁在完整的平衡路徑上之臨界狀態 55
第七章 結論 62
參考文獻 64
附圖 69

參 考 文 獻

[1] Addessi, D., Lacarbonara, and W., Paolone, A., “Free in-plane vibrations of highly buckled beams carrying a lumped mass” Acta Mechanica - ACTA MECH, Vol. 180, No. 1-4?z pp. 133– 156, 2005.
[2] Bathe, K. J., “Finite element procedures” Prentice-Hall, New Jersey, 1996.
[3] Battini, J.-M., Pacoste, C., and Eriksson, A., “Improved minimal augmentation procedure for the direct computation of critical points” Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 16-18, pp. 2169–2185, 2003.
[4] Buchaillot, L., Millet, O., Quevy, E., and Collard?z D., “Post-buckling dynamic behavior of self-assembled 3D microstructures” Microsystem Technologies?z Vol. 14?z No. 1?z pp. 69-78?z 2007.
[5] Casals-Terre, J., and Shkel, A. M., “Snap-action bistable micromechanism actuated by nonlinear resonance” IEEE Sensors (IEEE Cat. No.05CH37665C)?z pp. 893–896, 2005.
[6] Casals-Terre, J., Fargas-Marques, A., and Shkel, A. M., “Snap-action bistable micromechanisms actuated by nonlinear resonance” Journal of Microelectromechanical Systems, Vol. 17, No. 5?z pp. 1082– 1093, 2008.
[7] Chen, H. H., Lin, W. Y., and Hsiao, K. M., “Co-rotational finite element formulation for thin-walled beams with generic open section” Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 2334-2370, 2006.
[8] Chung, T. J., “Continuous Mechanics” Prentice Hall, Englewood Cliff, New Jersey, 1988.
[9] Crisfield, M. A., “A consistent corotational formulation for nonlinear, 3-dimensional, beam-elements” Computer Methods in Applied Mechanics and Engineering, Vol. 81, No. 2, pp. 131–150, 1990.
[10] Dawe, D. J., “Matrix and finite element displacement analysis of structures” Oxford University, New York, 1984.
[11] Emam, S. A., “A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams” PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2002.
[12] Eriksson, A., “Fold lines for sensitivity analyses in structural instability” Computer Methods in Applied Mechanics and Engineering, Vol. 114, No. 1-2, pp. 77–101, 1994.
[13] Eriksson, A., “Structural instability analyses based on generalised path-following” Computer Methods in Applied Mechanics and Engineering, Vol. 156, No. 1-4, pp. 45–74, 1998.
[14] Eriksson, A., Pacoste, C., and Zdunek, A., “Numerical analysis of complex instability behaviour using incremental-iterative strategies” Computer Methods in Applied Mechanics and Engineering, Vol. 179, No. 3-4, pp. 265–305, 1999.
[15] Fang, W., and Wickert, J. A., “Post buckling of micromachined beams” Journal of Micromechanics and Microengineering, Vol. 4, No. 3, pp. 116–122, 1994.
[16] Fried, I., "Orthogonal Trajectory Accession to the Nonlinear Equilibrium Curve", Computer Methods in Applied Mechanics and Engineering, Vol. 47, pp. 283-297, 1984.
[17] Fujii, F., and Noguchi, H., “The buckling mode extracted from The LDLT-decomposed large-order stiffness matrix” Communications in Numerical Methods in Engineering, Vol. 18, No. 7, pp. 459–467, 2002.
[18] Gerson, Y., Krylov, S., Ilic, B., and Schreiber, D., Large displacement low voltage multistable micro actuator”21st IEEE International Conference on Micro Electro Mechanical Systems ( MEMS 2008?z), pp. 463–466, 2008.
[19] Heijden, G. H. M., Neukirch, S., Goss, V. G. A., and Thompson, J. M. T., “Instability and self-contact phenomena in the writhing of clamped rods.” International Journal of Mechanical Sciences, Vol. 45, pp. 161-191, 2003.
[20] Helvajian, H., “Microengineering Aerospace Systems” chapter 1 in Microengineering for Aerospace Systems, ed. ISBN 1-884989-03-9, Aerospace Press, El Segundo, CA, and AIAA, Reston, VA, 1999.
[21] Hibbeler, R. C., “Mechanics of Material” Prentice Hall, Eighth edition, 2011.
[22] Hsiao, K. M. and Hou, F. Y., “Nonlinear finite-element analysis of elastic frames” Computers & Structures, Vol. 26, No. 4, pp. 693–701, 1987.
[23] Hsiao, K. M., and Jang, J. Y., “Nonlinear dynamic analysis of elastic frames” Computers & Structures, Vol. 33, No. 4, pp. 1057–1063, 1989.
[24] Hsiao, K. M., and Jang, J. Y., “Dynamic analysis of planar flexible mechanisms by corotational formulation” Computer Methods in Applied Mechanics and Engineering, Vol. 87, No. 1, pp. 1–14, 1991.
[25] Hsiao, K. M., “Corotational total lagrangian formulation for 3-dimensional beam element” AIAA Journal, Vol. 30, No. 3, pp. 797–804, 1992.
[26] Hsiao, K. M., Yang, R. T., and Lee, A. C., “A consistent finite element formulation for non-linear dynamic analysis of planar beam” International Journal for Numerical Methods in Engineering, Vol. 37, No. 1, pp. 75–89, 1994.
[27] Nayfeh, A. H., Kreider, W., and Anderson, T. J., “Investigation of natural frequencies and mode shapes of buckled beams.” AIAA Journal, Vol. 33, No. 6, pp. 1121–1126, 1995.
[28] Nayfeh, A. H., and Emam, S. A., “Exact solution and stability of postbuckling configurations of beams” Nonlinear Dynamics, Vol. 54, No. 4?z pp. 395–408 , 2008.
[29] Noguchi, H., and Fujii, F., “Eigenvector-free indicator, pinpointing and branch-switching for bifurcation” Communications in Numerical Methods in Engineering, Vol. 19, No. 6, pp. 445–457, 2003.
[30] Parente, E., de Holanda, A. S., and Afonso da Silva, S. M. B., “Tracing nonlinear equilibrium paths of structures subjected to thermal loading” Computational Mechanics, Vol. 38, No. 6, pp. 505–520, 2006.
[31] Park, S., and Hah, D., “Pre-shaped buckled-beam actuators: Theory and experiments” Sensors and Actuators A: Physical, Vol. 148, No. 1, pp. 186–192, 2008.
[32] Patricio, P., Adda-Bedia, M., and Ben Amar, M., “An elastica problem: instabilities of an elastic arch” Physica D: Nonlinear Phenomena, Vol. 124, pp. 285–295, 1998.
[33] Pippard, A. B., “The elastic arch and its modes of instability” European Journal of Physics, Vol. 11, pp. 359–365, 1990.
[34] Poon, W. Y., Ng, C. F., and Lee, Y. Y., “Dynamic stability of a curved beam under sinusoidal loading” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering?z Vol. 216?z No. G4?z pp. 209-217?z 2002.
[35] Qiu, J., Lang, J. H., and Slocum, A. H., “A curved-beam bistable mechanism” Journal of Microelectromechanical Systems, Vol. 13, No. 2?z pp. 137– 146, 2004.
[36] Qu?臀y?z E., Buchaillot, L., Bigotte, P., and Collard, D., “self-assembling and actuation of electrostatic micro-mirrors”, European Solid-State Device Research Conference (ESSDERC 2000), pp. 412–415, 2000.
[37] Qu?臀y?z E., Buchaillot, L., and Collard, D., “3-D self-assembling and actuation of electrostatic microstructures” Electron Devices, IEEE Transactions on, Vol. 48, No. 8, 34pp. 1833–1839, Aug. 2001.
[38] Qu?臀y?z E., Buchaillot, L., Bigotte, P., and Collard, D., “Large stroke actuation of continuous membrane for adaptive optics by 3D self-assembled microplates” Sensors and Actuators A: Physical?z Vol. 95?z No. 2?z pp. 183-195?z 2002.
[39] Rao, S. S., “Mechanical Vibrations, Third Edition” Addision-Wesley, 1995.
[40] Rossiter, J., Stoimenov, B., and Mukai, T., “A bistable artificial muscle actuator” 2006 IEEE International Symposium on Micro- NanoMechatronics and Human Science (IEEE Cat. No. 06TH8922C) pp. 35-40, 2006.
[41] Samuel, B. A., Desai, A. V., and Haque, M. A., “Design and modeling of a MEMS pico-Newton loading/sensing device” Sensors and Actuators A: Physical, Vol. 127, No. 1, pp. 155-162, 2006.
[42] Tsai, M. H., Chang, C. W., and Hsiao, K. M., “Nonlinear analysis of planar beams under displacement loading” The First South-East European Conference on Computational Mechanics, SEECCM-06, Kragujevac, Serbia and Montenegro, 2006.
[43] Tseng, W. Y., and Dugundji, J., “Nonlinear vibrations of a buckled beam under harmonic excitation” ASME Journal of Applied Mechanics?z Vol. 38?z No. 2?z pp. 467-476?z 1971.
[44] Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., and Cui, W., “Nonlinear dynamics of mems arches under harmonic electrostatic actuation” Journal of Microelectromechanical Systems, Vol. 19, No. 3?z pp. 647–656, 2010.
[45] Yuh, J., and Young, T., “Dynamic modeling of an axially moving beam in rotation: simulation and experiment”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 113, pp. 34-40, 1991.
[46] 黃智傑, “旋轉三維Timoshenko梁之振動分析” 國立交通大學機械工程學系, 碩士論文, 台灣, 新竹, 2001

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊