(3.215.180.226) 您好!臺灣時間:2021/03/06 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:凱富
研究生(外文):Cristopher Camacho Leandro
論文名稱:小型過渡金屬簇之精確電子結構計算
論文名稱(外文):Accurate electronic structure calculations on small transition metal clusters
指導教授:魏恆理
指導教授(外文):Henryk Witek
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:123
中文關鍵詞:Perturbation theoryIntruder statesTransition metalsCASSCF
外文關鍵詞:Perturbation theoryIntruder statesTransition metalsCASSCF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The potential energy curve of the ground state of Mn$_2$ has been
studied using a systematic sequence of complete active spaces.
Deficiencies of the routinely used active space, built from atomic $4s$
and $3d$ orbitals, has been identified and discussed. It is shown that
an additional $\sigma_g$ orbital, originating from the atomic virtual
$4p_z$ orbitals, is essential for a proper description of static
correlation in the $^1\Sigma_{g}^{+}$ state of Mn$_2$. The calculated
spectroscopic parameters of the $^1\Sigma_{g}^{+}$ state agree well with
available experimental data. The calculated equilibrium bond lengths
are located between 3.24 and~3.50~{\AA}, the harmonic vibrational
frequencies, between 44 and~72~cm$^{-1}$, and the dissociation energies,
between 0.05 and~0.09~eV.

A detailed analysis of a severe intruder state problem in the multistate
multireference perturbation theory (MS-MRPT) calculations on the ground
state of manganese dimer is presented. An enormous number of detected
intruder states ($>$5000) do not permit finding even an approximate
shape of the $X^1\Sigma_{g}^{+}$ potential energy curve. The intruder
states are explicitly demonstrated to originate from quasidegeneracies
in the zeroth-order Hamiltonian spectrum. The electronic configurations
responsible for appearance of the quasidegeneracies are identified as
single and double excitations from the active orbitals to the external
orbitals. It is shown that the quasidegeneracy problem can be
completely eliminated using shift techniques despite of its severity.
The resultant curves are smooth and continuous. Unfortunately, strong
dependence of the spectroscopic parameters of the $X^1\Sigma_{g}^{+}$
state on the shift parameter is observed. This finding rises serious
controversies regarding validity of employing shift techniques for
solving the intruder state problem in multistate multireference
perturbation theory.

Prediction of a false ground state with popular variants of
multireference perturbation theory (CASPT2 and MRMP) is reported. The
failure occurs for a remarkably simple chemical system: the Sc$_2$
molecule. Reasons for the failure are discussed and appropriate
remedies are suggested. The presented finding has far-reaching
consequences for all the chemical community giving a serious warning on
the applicability of multireference perturbation theory in the presence
of intruder states.

A systematic investigation of low-lying states of Sc$_2$ using
multireference perturbation theory (NEVPT2 and NEVPT3) indicates that
the ground state of this system is $^5\Sigma_u^-$ with
$r_e=2.611$~{\AA}, $\omega_e=241.8$~cm$^{-1}$, and $D_e=1.78$~eV. This
state is closely followed by other low-lying states of Sc$_2$:
$^3\Sigma_u^-$, $^5\Delta_u$, $^3\Pi_g$, $^1\Pi_g$, and $^1\Sigma_u^-$.
Our energy ordering of the $^5\Sigma_u^-$ and $^3\Sigma_u^-$ states
confirms the recent MRCI results of Kalemos \textit{et al.}
[\textit{J.Chem.Phys.} \textbf{132}, 024309 (2010)] and is at variance
with the earlier DMC predictions of Matxain \textit{et al.}
[\textit{J.Chem.Phys.} \textbf{128}, 194315 (2008)]. An excellent
agreement between the second- and third-order NEVPT results and between
the computed and experimental values of $\omega_e$ (241.8 vs.
238.9~cm$^{-1}$) for the $^5\Sigma_u^-$ state suggests high accuracy of
our predictions.

The potential energy curve of the ground state of Mn$_2$ has been
studied using a systematic sequence of complete active spaces.
Deficiencies of the routinely used active space, built from atomic $4s$
and $3d$ orbitals, has been identified and discussed. It is shown that
an additional $\sigma_g$ orbital, originating from the atomic virtual
$4p_z$ orbitals, is essential for a proper description of static
correlation in the $^1\Sigma_{g}^{+}$ state of Mn$_2$. The calculated
spectroscopic parameters of the $^1\Sigma_{g}^{+}$ state agree well with
available experimental data. The calculated equilibrium bond lengths
are located between 3.24 and~3.50~{\AA}, the harmonic vibrational
frequencies, between 44 and~72~cm$^{-1}$, and the dissociation energies,
between 0.05 and~0.09~eV.

A detailed analysis of a severe intruder state problem in the multistate
multireference perturbation theory (MS-MRPT) calculations on the ground
state of manganese dimer is presented. An enormous number of detected
intruder states ($>$5000) do not permit finding even an approximate
shape of the $X^1\Sigma_{g}^{+}$ potential energy curve. The intruder
states are explicitly demonstrated to originate from quasidegeneracies
in the zeroth-order Hamiltonian spectrum. The electronic configurations
responsible for appearance of the quasidegeneracies are identified as
single and double excitations from the active orbitals to the external
orbitals. It is shown that the quasidegeneracy problem can be
completely eliminated using shift techniques despite of its severity.
The resultant curves are smooth and continuous. Unfortunately, strong
dependence of the spectroscopic parameters of the $X^1\Sigma_{g}^{+}$
state on the shift parameter is observed. This finding rises serious
controversies regarding validity of employing shift techniques for
solving the intruder state problem in multistate multireference
perturbation theory.

Prediction of a false ground state with popular variants of
multireference perturbation theory (CASPT2 and MRMP) is reported. The
failure occurs for a remarkably simple chemical system: the Sc$_2$
molecule. Reasons for the failure are discussed and appropriate
remedies are suggested. The presented finding has far-reaching
consequences for all the chemical community giving a serious warning on
the applicability of multireference perturbation theory in the presence
of intruder states.

A systematic investigation of low-lying states of Sc$_2$ using
multireference perturbation theory (NEVPT2 and NEVPT3) indicates that
the ground state of this system is $^5\Sigma_u^-$ with
$r_e=2.611$~{\AA}, $\omega_e=241.8$~cm$^{-1}$, and $D_e=1.78$~eV. This
state is closely followed by other low-lying states of Sc$_2$:
$^3\Sigma_u^-$, $^5\Delta_u$, $^3\Pi_g$, $^1\Pi_g$, and $^1\Sigma_u^-$.
Our energy ordering of the $^5\Sigma_u^-$ and $^3\Sigma_u^-$ states
confirms the recent MRCI results of Kalemos \textit{et al.}
[\textit{J.Chem.Phys.} \textbf{132}, 024309 (2010)] and is at variance
with the earlier DMC predictions of Matxain \textit{et al.}
[\textit{J.Chem.Phys.} \textbf{128}, 194315 (2008)]. An excellent
agreement between the second- and third-order NEVPT results and between
the computed and experimental values of $\omega_e$ (241.8 vs.
238.9~cm$^{-1}$) for the $^5\Sigma_u^-$ state suggests high accuracy of
our predictions.

1 General Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The multiconfiguration self-consistent field approach . . . . . . . . . . 2
1.3 Multireference perturbation theory . . . . . . . . . . . . . . . . . . . 3
1.3.1 Rayleigh-Schr¨odinger perturbation theory . . . . . . . . . . . 4
1.3.2 The choice of ˆH0 . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Intruder states in multireference perturbation theory . . . . . . . . . 8
2 Ground state of Mn2 revisited 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Choice of active space . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Bonding mechanism in Mn2 . . . . . . . . . . . . . . . . . . . 16
2.3.3 Spectroscopic constants . . . . . . . . . . . . . . . . . . . . . 20
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Intruder states in MRPT: Mn2 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 MCQDPT potential energy curves . . . . . . . . . . . . . . . . 34
3.3.2 CASPT2 potential energy curves . . . . . . . . . . . . . . . . 37
3.3.3 Analysis of intruder states in the MCQDPT calculations . . . 39
3.3.4 Failure of shift techniques . . . . . . . . . . . . . . . . . . . . 42
3.3.5 Alternative methods of removing intruder states . . . . . . . . 43
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4 Intruder states in MRPT: Sc2 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 The low-lying states of the scandium dimer 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Atomic calculations . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Low-lying states of Sc2 . . . . . . . . . . . . . . . . . . . . . . 75
5.3.3 NEVPT3 results for the 5−
u and 3−
u states . . . . . . . . . . 80
5.3.4 A comment on the applicability of reduced valence active spaces 81
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6 General conclusions 91
A Publications list 94
A.1 Publications included in this dissertation . . . . . . . . . . . . . . . . 94
A.2 Publications not included in this dissertation . . . . . . . . . . . . . . 94
B Auxiliary material for: Chapter 2 96
B.1 Deficiencies of the (12o,14e) active space . . . . . . . . . . . . . . . . 96
B.2 PES with the (13o,14e) active space . . . . . . . . . . . . . . . . . . . 101
B.3 Larger active spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.4 BSSE corrections and non-size consistency error . . . . . . . . . . . . 106
B.5 How short can be the bond in Mn2? . . . . . . . . . . . . . . . . . . . 110
B.6 ORMAS estimation of the full-valence CASSCF PES . . . . . . . . . 110
C Auxiliary material for Chapter 3 116
C.1 Note on deficiencies of H0 in MCQDPT . . . . . . . . . . . . . . . . . 116
C.2 Note on multistate MCQDPT calculations . . . . . . . . . . . . . . . 116
C.3 CASPT2 calculations with various values of the IPEA shift . . . . . . 118
C.4 Excluding terms from the perturbation . . . . . . . . . . . . . . . . . 119
D Auxiliary material for Chapter 4 121
B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980).
J. Ivanic, J. Chem. Phys. 119, 9364 (2003).
J. Ivanic, J. Chem. Phys. 119, 9377 (2003).
J. Olsen, B. O. Roos, P. Jテクrgensen, and H. J. Aa. Jensen, J. Chem. Phys. 89, 2185 (1988).
H. Nakano and K. Hirao, Chem. Phys. Lett. 317, 90 (2000).
E. Schrツィodinger, Phys. Rev. 28, 1049 (1926).
H. Nakano, R. Uchiyama, and K. Hirao, J. Comput. Chem. 23, 1166 (2002).
R. Ebisuzaki, Y. Watanabe, and H. Nakano, Chem. Phys. Lett. 442, 164 (2007).
K. Hirao, Chem. Phys. Lett. 196, 397 (1992).
H. Nakano, J. Chem. Phys. 99, 7983 (1993).
K. Andersson, P. ツーA. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
K. Andersson, P. ツーA. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
K. Pierloot and E. van Besien, J. Chem. Phys. 123, 204309 (2005).
P. Celani and H.-J. Werner, J. Chem. Phys. 112, 5546 (2000).
C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J. Chem. Phys. 114, 10252 (2001).
C. Angeli, B. Bories, A. Cavallini, and R. Cimiraglia, J. Chem. Phys. 124, 054108 (2006).
K. G. Dyall, J. Chem. Phys. 102, 4909 (1995).
N. Forsberg and P. ツーA. Malmqvist, Chem. Phys. Lett. 274, 196 (1997).
B. O. Roos and K. Andersson, Chem. Phys. Lett. 245, 215 (1995).
H. A. Witek, Y.-K. Choe, J. P. Finley, and K. Hirao, J. Comput. Chem. 23, 957 (2002).

J. M. Rintelman, M. S. Gordon, G. D. Fletcher, and J. Ivanic, J. Chem. Phys. 124, 034303 (2006).
G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2001).
T. Yanai and G. K.-L. Chan, J. Chem. Phys. 124, 194106 (2006).
D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 128, 144117 (2008).
K. Balasubramanian and X. L. Zhu, J. Chem. Phys. 114, 10375 (2001).
K. Balasubramanian and X. Zhu, J. Chem. Phys. 117, 4861 (2002).
B. Wang and Z. Chen, J. Chem. Phys. 123, 134306 (2005).
T. Noro, C. Ballard, M. H. Palmer, and H. Tatewaki, J. Chem. Phys. 100, 452 (1994).
K. K. Das and K. Balasubramanian, J. Chem. Phys. 95, 2568 (1991).
C. Angeli, R. Cimiraglia, and J. P. Malrieu, J. Chem. Phys. 117, 9138 (2002).
N. Forsberg and P. ツーA. Malmqvist, Chem. Phys. Lett. 274, 196 (1997).
K. Andersson, Chem. Phys. Lett. 237, 212 (May 1995).
B. O. Roos and K. Andersson, Chem. Phys. Lett. 245, 215 (1995).
P. Celani, H. Stoll, H.-J. Werner, and P. Knowles, Mol. Phys. 102, 2369 (2004).
O. Hubner and J. Sauer, Chem. Phys. Lett. 358, 442 (2002).
K. Andersson, Theor. Chem. Acc. 110, 218 (2003).
K. Balasubramanian, Chem. Phys. Lett. 365, 413 (2002).
K. Balasubramanian and C. Ravimohan, J. Chem. Phys. 92, 3659 (1990).
K. Balasubramanian and D. W. Liao, J. Phys. Chem. 93, 3989 (1989).
Y. Suzuki, T. Noro, F. Sasaki, and H. Tatewaki, TEOCHEM 461-462, 351 (1998).
K. Ellingsen, T. Saue, C. Pouchan, and O. Gropen, Chem. Phys. 311, 35 (2005).
X. Cao and M. Dolg, Theor. Chem. Acc. 108, 143 (2002).
I. Itkin and A. Zaitsevskii, Chem. Phys. Lett. 374, 143 (2003).
C. F. Kunz, C. Hツィattig, and B. A. Hess, Molecular Physics 89, 139 (1996).
A. C. Borin, J. P. Gobbo, and B. O. Roos, Chem. Phys. 343, 210 (2008).
B. O. Roos, Collect. Czech. Chem. Commun. 68, 265 (2003).
Y. Suzuki, S. Asai, K. Kobayashi, T. Noro, F. Sasaki, and H. Tatewaki, Chem. Phys. Lett. 268, 213 (1997).
S. Yamamoto, H. Tatewaki, H. Moriyama, and H. Nakano, J. Chem. Phys. 124, 124302 (2006).
K. D. Bier, T. L. Haslett, A. D. Kirkwood, and M. Moskovits, Chem. Phys. Lett. 89, 6 (1988).
A. D. Kirkwood, K. D. Bier, J. K. Thompson, T. L. Haslett, A. S. Huber, and M. Moskovits, J. Phys. Chem. 95, 2644 (1991).
B. Wang and Z. Chen, Chem. Phys. Lett. 387, 395 (2004).
N. B. Amor and D. Maynau, Chem. Phys. Lett. 286, 211 (1998).
H. Dachsel, R. Harrison, and D. Dixon, J. Phys. Chem. A 103, 152 (1999).
K. Hirao, Chem. Phys. Lett. 196, 397 (1992).
H. Nakano, J. Chem. Phys. 99, 7983 (1993).
C. W. Bauschlicher, Jr., Chem. Phys. Lett. 156, 95 (1989).
B. R. Brooks and H. F. Schaefer, III, J. Chem. Phys. 70, 5092 (1979).
J. Ivanic and K. Ruedenberg, Theor. Chem. Acc. 106, 339 (2001).
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L.Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).
N. Balabanov and K. Peterson, J. Chem. Phys. 123, 064107 (2005).
N. Balabanov and K. Peterson, J. Chem. Phys. 125, 074110 (2006).
H. A. Witek, Y.-K. Choe, J. P. Finley, and K. Hirao, J. Comput. Chem. 23, 957 (2002).
S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
J. H. van Lenthe, J. G. C. M. van Duijneveldt-van de Rijdt, and F. B. van Duijneveldt, Adv. Chem. Phys. 69, 521 (1987).
S. K. Nayak and P. Jena, Chem. Phys. Lett. 289, 473 (1998).
S. Yanagisawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 112, 545 (2000).
S. Yamanaka, T. Ukai, K. Nakata, R. Takeda, M. Shoji, T. Kawakami, T. Takada, and K. Yamaguchi, Int. J. Quantum Chem. 107, 3178 (2007).
B. O. Roos, Acc. Chem. Res. 32, 137 (1998).
J. Martin, Chem. Phys. Lett. 303, 399 (1999).
A. A. Buchachenko, private communication.
J. Charles W. Bauschlicher and H. Partridge, J. Chem. Phys. 80, 334 (1984).
L. Rajchel, G. Cha lasiツエnski, and M. M. Szczesniak, unpublished results.
F.-M. Tao, J. Chem. Phys. 111, 2407 (1999).
M. Hanni, P. Lantto, N. Runeberg, J. Jokisaari, and J. Vaara, J. Chem. Phys. 121, 5908 (2004).
T. L. Gilbert and A. C. Wahl, J. Chem. Phys. 47, 3425 (1967).
G. Cha lasiツエnski, D. J. Funk, J. Simons, and W. H. Breckenridge, J. Chem. Phys. 87, 3569 (1987).
J. Ivanic, J. Chem. Phys. 119, 9364 (2003).
J. Ivanic, J. Chem. Phys. 119, 9377 (2003).
C. A. Baumann, R. J. Van Zee, S. V. Bhat, and W. Weltner, Jr., J. Chem. Phys. 78, 190 (1983).
A. Kant, S. Lin, and B. Strauss, J. Chem. Phys. 49, 1983 (1968).
T. L. Haslett, M. Moskovits, and A. Weitzman, J. Mol. Spectrosc. 135, 259 (1989).
J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron paramagnetic resonance: elementary theory and practical applications (Wiley, New York, 1994) p. 272.

S. Yamamoto, H. Tatewaki, H. Moriyama, and H. Nakano, J. Chem. Phys. 124, 124302 (2006).
B. Wang and Z. Chen, Chem. Phys. Lett. 387, 395 (2004).
B. Wang and Z. Chen, J. Chem. Phys. 123, 134306 (2005).
C. W. Bauschlicher, Jr., Chem. Phys. Lett. 156, 95 (1989).
R. K. Nesbet, Phys. Rev 135, A460 (1964).
J. Harris and R. O. Jones, J. Chem. Phys. 70, 830 (1979).
M. R. Pederson, F. Reuse, and S. N. Khanna, Phys. Rev. B 58, 5632 (1998).
N. Desmarais, F. A. Reuse, and S. N. Khanna, J. Chem. Phys. 112, 5576 (2000).
S. Yanagisawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 112, 545 (2000).
C. J. Barden, J. C. Rienstra-Kiracofe, and H. F. Schaefer, III, J. Chem. Phys. 113, 690 (2000).
P. Bobadova-Parvanova, K. A. Jackson, S. Srinivas, and M. Horoi, J. Chem. Phys. 122, 014310 (2005).
M. Valiev, E. J. Bylaska, and J. H. Weare, J. Chem. Phys. 119, 5955 (2003).
G. L. Gutsev and C. W. Bauschlicher, Jr., J. Phys. Chem. A 107, 4755 (2003).
S. K. Nayak and P. Jena, Chem. Phys. Lett. 289, 473 (1998).
N. Fujima and T. Yamaguchi, J. Phys. Soc. Jpn. 64, 1251 (1995).
S. Yamanaka, T. Ukai, K. Nakata, R. Takeda, M. Shoji, T. Kawakami, T. Takada, and K. Yamaguchi, Int. J. Quantum Chem. 107, 3178 (2007).
K. Yamaguchi, T. Tsunekawa, Y. Toyoda, and T. Fueno, Chem. Phys. Lett. 143, 371 (1988).
H. A. Witek, Y.-K. Choe, J. P. Finley, and K. Hirao, J. Comput. Chem. 23, 957 (2002).
B. O. Roos and K. Andersson, Chem. Phys. Lett. 245, 215 (1995).
N. Forsberg and P. ツーA. Malmqvist, Chem. Phys. Lett. 274, 196 (1997).
Y. G. Khait, J. Song, and M. R. Hoffmann, J. Chem. Phys. 117, 4133 (2002).
H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schツィutz, et al., 窶廴olpro, version 2009.1, a package of ab initio programs,窶・(2009), http://www.molpro.net.
G. Karlstrom, R. Lindh, P. ツーA. Malmqvist, B. O. Roos, U. Ryde, V.
zov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and
ijo, Com-putational Material Science 28, 222 (2003).
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L.Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).
D. G. Fedorov, T. Nakajima, and K. Hirao, J. Chem. Phys. 118, 4970 (2003).
S. Iuchi, A. Morita, and S. Kato, J. Chem. Phys. 121, 8446 (2004).
S. Patchkovskii, Phys. Chem. Chem. Phys. 8, 926 (2006).
V. V. Sliznev, N. Vogt, and J. Vogt, J. Mol. Struct. 780-781, 247 (2006).
G. Gopakumar, P. Lievens, and M. T. Nguyen, J. Chem. Phys. 124, 214312 (2006).
R. J. Doyle, R. D. Campo, P. R. Taylor, and S. R. Mackenzie, J. Chem. Phys. 121, 835 (2004).
K. Pierloot and S. Vancoillie, J. Chem. Phys. 125, 124303 (2006).
T. A. A. Oliver, P. R. Taylor, R. J. Doyle, and S. R. Mackenzie, J. Chem. Phys. 127, 024301 (2007).
G. Olaso-Gonzツエalez, D. Roca-Sanjuツエan, L. Serrano-Andrツエes, and M. Merchツエan, J. Chem. Phys. 125, 231102 (2006).
W. Zou and W. Liu, J. Chem. Phys. 124, 154312 (2006).
H. Chen and S. Li, J. Chem. Phys. 124, 154315 (2006).
K. Pierloot and E. van Besien, J. Chem. Phys. 123, 204309 (2005).
C. de Graaf, L. Hozoi, and R. Broer, J. Chem. Phys. 120, 961 (2004).
K. Pierloot, A. Delabie, M. H. Groothaert, and R. A. Schoonheydt, Phys. Chem. Chem. Phys. 3, 2174 (2001).
M. Rubio, B. O. Roos, L. Serrano-Andrツエes, and M. Merchツエan, J. Chem. Phys. 110, 7202 (1999).
Y.-K. Choe, H. A. Witek, J. P. Finley, and K. Hirao, J. Chem. Phys. 114, 3913 (2001).
H. Nakano, J. Chem. Phys. 99, 7983 (1993).
K. Andersson, P. ツーA. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
K. Andersson, P. ツーA. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).
C. A. Baumann, R. J. Van Zee, S. V. Bhat, and W. Weltner, Jr., J. Chem. Phys. 78, 190 (1983).
A. D. Kirkwood, K. D. Bier, J. K. Thompson, T. L. Haslett, A. S. Huber, and M. Moskovits, J. Phys. Chem. 95, 2644 (1991).
K. D. Bier, T. L. Haslett, A. D. Kirkwood, and M. Moskovits, Chem. Phys. Lett. 89, 6 (1988).
A. Kant, S. Lin, and B. Strauss, J. Chem. Phys. 49, 1983 (1968).
T. L. Haslett, M. Moskovits, and A. Weitzman, J. Mol. Spectrosc. 135, 259 (1989).
C. Camacho, S. Yamamoto, and H. A. Witek, Phys. Chem. Chem. Phys. 10, 5128 (2008).
G. Ghigo, B. O. Roos, and P. ツーA. Malmqvist, Chem. Phys. Lett. 396, 142 (2004).

J. M. Matxain, E. Rezabal, X. Lopez, J. M. Ugalde, and L. Gagliardi, J. Chem. Phys. 128, 194315 (2008).
K. Hirao, Chem. Phys. Lett. 196, 397 (1992).
H. Nakano, J. Chem. Phys. 99, 7983 (1993).
C. Camacho, S. Yamamoto, and H. A. Witek, Phys. Chem. Chem. Phys. 10, 5128 (2008).
C. Camacho, H. A. Witek, and S. Yamamoto, J. Comput. Chem. 30, 468 (2009).
K. Andersson, P. ツーA. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
P. Celani and H.-J. Werner, J. Chem. Phys. 112, 5546 (2000).
G. Karlstrom, R. Lindh, P. ツーA. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, Com-putational Material Science 28, 222 (2003).
H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schツィutz, et al., 窶廴olpro, version 2009.1, a package of ab initio programs,窶・(2009), http://www.molpro.net.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L.Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).
G. Ghigo, B. O. Roos, and P. ツーA. Malmqvist, Chem. Phys. Lett. 396, 142 (2004).
N. Forsberg and P. ツーA. Malmqvist, Chem. Phys. Lett. 274, 196 (1997).
B. O. Roos and K. Andersson, Chem. Phys. Lett. 245, 215 (1995).
H. A. Witek, Y.-K. Choe, J. P. Finley, and K. Hirao, J. Comput. Chem. 23, 957 (2002).
K. G. Dyall, J. Chem. Phys. 102, 4909 (1995).
C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J. Chem. Phys. 114, 10252 (2001).

C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 2005).
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks Cole, Philadel-phia: Saunders College, 1976).
A. D. McLean, J. Chem. Phys. 79, 3392 (1983).
D. Tzeli, U. Miranda, I. G. Kaplan, and A. Mavridis, J. Chem. Phys. 129, 154310 (2008).
S. F. Li, Z. Shao, S. Han, X. Xue, F. Wang, Q. Sun, Y. Jia, and Z. X. Guo, J. Chem. Phys. 131, 184301 (2009).
C. Angeli, A. Cavallini, and R. Cimiraglia, J. Chem. Phys. 127, 074306 (2007).
A. C. Borin, J. P. Gobbo, and B. O. Roos, Chem. Phys. 343, 210 (2008).
J. M. Matxain, E. Rezabal, X. Lopez, J. M. Ugalde, and L. Gagliardi, J. Chem. Phys. 128, 194315 (2008).
K. Ellingsen, T. Saue, C. Pouchan, and O. Gropen, Chem. Phys. 311, 35 (2005).
C. Angeli, B. Bories, A. Cavallini, and R. Cimiraglia, J. Chem. Phys. 124, 054108 (2006).
C. Angeli, A. Cavallini, and R. Cimiraglia, J. Chem. Phys. 128, 244317 (2008).
C. Camacho, S. Yamamoto, and H. A. Witek, Phys. Chem. Chem. Phys. 10, 5128 (2008).
C. Camacho, H. A. Witek, and S. Yamamoto, J. Comput. Chem. 30, 468 (2009).
B. Minaev, Spectrochim. Acta, Part A 62, 790 (2005).
Z. Wu, B. Han, Z. Dai, and P. Jin, Chem. Phys. Lett. 403, 367 (2005).
S. Castillo, A. Cruz, V. Bertin, E. Poulain, J. S. Arellano, and G. D. Angel, Int. J. Quantum Chem. 62, 29 (1997).
G. Bravo-Pツエerez, I. L. Garzツエon, and O. Novaro, J. Mol. Struct. THEOCHEM 493, 225 (1999).
R. Beuc, M. Movre, V. Horvatic, C. Vadla, O. Dulieu, and M. Aymar, Phys. Rev. A 75, 032512 (2007).
H.-K. Chung, K. Kirby, and J. F. Babb, Phys. Rev. A 63, 032516 (2001).
D. Dai, S. Roszak, and K. Balasubramanian, Chem. Phys. Lett. 308, 495 (1999).
L. A. Kaledin, A. L. Kaledin, M. C. Heaven, and V. E. Bondybey, J. Mol. Struct. THEOCHEM 461-462, 177 (1999).
E. Czuchaj, M. Kroツエsnicki, and H. Stoll, Chem. Phys. Lett. 371, 401 (2003).
C.-R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M. Sakata, and H. Shinohara, Nature 408, 426 (2000).
K. Kobayashi and S. Nagase, Chem. Phys. Lett. 362, 373 (2002).
M. Takata, E. Nishibori, M. Sakata, C. R-Wang, and H. Shinohara, Chem. Phys. Lett. 372, 512 (2003).
Z. Slanina, Z. Chen, P. v. R. Schleyer, F. Uhlツエトアk, X. Lu, and S. Nagase, J. Phys. Chem. A 110, 2231 (2006).
Y. Ito, W. Fujita, T. Okazaki, T. Sugai, K. Awaga, E. Nishibori, M. Takata, M. Sakata, and H. Shinohara, ChemPhysChem 8, 1019 (2007).
A. R. Khamatgalimov and V. I. Kovalenko, Russ. J. Phys. Chem. A 82, 1164 (2008).
D. Liu and F. Hagelberg, Int. J. Quantum Chem. 107, 2253 (2007).
Y.-H. Cui, W. Q. Tian, J.-K. Feng, and D.-L. Chen, J. Comput. Chem. 29, 2623 (2008).
A. Kalemos, I. G. Kaplan, and A. Mavridis, J. Chem. Phys. 132, 024309 (2010).
J. L. Jules and J. R. Lombardi, J. Phys. Chem. A 107, 1268 (2003).
M. Moskovits, D. P. DiLella, and W. Limm, J. Chem. Phys. 80, 626 (1984).
M. E. Jacox, J. Phys. Chem. Ref. Data, 461(1994), monograph 3.
G. Verhaegen, S. Smoes, and J. Drowart, J. Chem. Phys. 40, 239 (1964).
J. Drowart, in Phase Stability in Metals and Alloys, edited by P. S. Rudman, J. Stringer, and R. I. Jafee (McGraw-Hill, New York, 1967) pp. 305窶・07.
H. ツーAkeby, L. G. M. Pettersson, and P. E. M. Siegbahn, J. Chem. Phys. 97, 1850 (1992).
H. ツーAkeby and L. G. M. Pettersson, J. Mol. Spectrosc. 159, 17 (1993).
T. L. Haslett, M. Moskovits, and A. L. Weitzman, J. Mol. Spectrosc. 135, 259 (1989).
R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. 52, 3869 (1970).
R. J. LeRoy, J. Chem. Phys. 73, 6003 (1980).
L. B. Knight, Jr., R. J. V. Zee, and W. Weltner, Jr., Chem. Phys. Lett. 94, 296 (1983).
R. Busby, W. Klotzbツィucher, and G. A. Ozin, J. Am. Chem. Soc. 98, 4013 (1976).
W. F. Cooper, G. A. Clarke, and C. R. Hare, J. Phys. Chem. 76, 2268 (1972).
V. D. Fursova, A. P. Klyagina, A. A. Levin, and G. L. Gutsev, Chem. Phys. Lett. 116, 317 (1985).
A. Wolf and H.-H. Schmidtke, Int. J. Quantum. Chem. 18, 1187 (1980).
C. Wood, M. Doran, I. H. Hillier, and M. F. Guest, Faraday Symp. 14, 159 (1980).
Y. Suzuki, S. Asai, K. Kobayashi, T. Noro, F. Sasaki, and H. Tatewaki, Chem. Phys. Lett. 268, 213 (1997).
S. P. Walch and C. W. Bauschlicher, Jr., J. Chem. Phys. 79, 3590 (1983).
G. H. Jeung, Chem. Phys. Lett. 125, 407 (1986).
Y. Suzuki, S. Asai, K. Kobayashi, T. Noro, F. Sasaki, and H. Tatewaki, Chem. Phys. Lett. 268, 213 (1997).
G. L. Gutsev, P. Jena, B. K. Rao, and S. N. Khanna, J. Chem. Phys. 114, 10738 (2001).
G. Das, Chem. Phys. Lett. 86, 482 (1982).
S. P. Walch and C. W. Bauschlicher, Jr., Chem. Phys. Lett. 94, 290 (1983).
J. Harris and R. O. Jones, J. Chem. Phys. 70, 830 (1979).
S. Yanagisawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 112, 545 (2000).
I. Pツエapai and M. Castro, Chem. Phys. Lett. 267, 551 (1997).
C. J. Barden, J. C. Rienstra-Kiracofe, and H. F. Schaefer III, J. Chem. Phys. 113, 690 (2000).
M. Valiev, E. J. Bylaska, and J. H. Weare, J. Chem. Phys. 119, 5955 (2003).
A. Bツエerces, Spectrochim. Acta A 53, 1257 (1997).
G. L. Gutsev and C. W. Bauschlicher, Jr., J. Phys. Chem. A 107, 4755 (2003).
K. Hirao, Chem. Phys. Lett. 196, 397 (1992).
H. Nakano, J. Chem. Phys. 99, 7983 (1993).
H. A. Witek, Y.-K. Choe, J. P. Finley, and K. Hirao, J. Comput. Chem. 23, 957 (2002).
J. M. Matxain, E. Rezabal, X. Lopez, J. M. Ugalde, and L. Gagliardi, J. Chem. Phys. 132, 139901 (2010).
C. Camacho, R. Cimiraglia, and H. A. Witek, Phys. Chem. Chem. Phys. 12, 5058 (2010).
C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J. Chem. Phys. 114, 10252 (2001).
C. Angeli, R. Cimiraglia, and J. P. Malrieu, J. Chem. Phys. 117, 9138 (2002).
C. Angeli, M. Pastore, and R. Cimiraglia, Theor. Chem. Acc. 117, 743 (2007).
B. O. Roos, R. Lindh, P. ツーA. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys. Chem. A 109, 6575 (2005).
B. A. Hess, Phys. Rev. A 33, 3742 (1986).
H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schツィutz, et al., 窶廴olpro, version 2009.1, a package of ab initio programs,窶・(2009), http://www.molpro.net.
C. E. Moore, Atomic Energy Levels, Vol. I (1971) p. 260.
C. Angeli, S. Borini, M. Cestari, and R. Cimiraglia, J. Chem. Phys. 121, 4043 (2004).
A. A. Buchachenko, G. Cha lasiツエnski, and M. M. Szcz,eツエsniak, J. Chem. Phys. 132, 024312 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔