跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林易萱
研究生(外文):Lin, Yi-Hsuan
論文名稱:非同餘子群的模型式的同餘性質
論文名稱(外文):Atkin and Swinnerton-Dyer congruences associated to Fermat curves
指導教授:楊一帆楊一帆引用關係
指導教授(外文):Yang, Yifan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:25
中文關鍵詞:模形式費馬曲線ASD同餘
外文關鍵詞:Modular formFermat curveASD congruence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
 眾所周知的,費馬曲線 x^n+y^n=1 是一個與特殊線性群SL_2(Z)的有限指數子群Γ_n相關聯的模曲線,當n不等於1, 2, 4, 8時, Γ_n是一個非同餘子群。現在令費馬曲線的虧格為g,scholl的定理告訴我們,Γ_n上權為2的尖點型式與由此曲線相關聯的Tate模所建構出的2g維l進數伽羅瓦表現會滿足Atkin and Swinnerton-Dyer同餘。

  在這篇論文中,我們將會分解伽羅瓦表現,然後給一個更加精確的Atkin and Swinnerton-Dyer同餘。我們將會解決n=6的情況。

It is known that each Fermat curve x^n+y^n=1 is the modular curve associated to some subgroup Γ_n of SL_2(Z) of finite index. Moreover if n≠1,2,4,8 then Γ_n is a noncongruence subgroup. Let g be the genus of the Fermat curve, by Scholl’s theorem, cuspforms of weight 2 on Γ_n, together with the 2g-dimensional l-adic Galois representations coming from the Tate module associate this curve, satisfy the Atkin and Swinnerton-Dyer congruence.
In this thesis, we decompose this Galois representation and give a more precise Atkin and Swinnerton-Dyer congruence. The case n=6 will be completely worked out.

中文提要 i
英文提要 ii
誌謝 iii
目錄 iv
1 Introduction 1
2 Review of modular forms on congruence subgroups 2
2.1 Modular forms and cusp forms 2
2.2 Hecke operators 5
2.3 Petersson inner product 9
2.4 Oldforms and Newforms 10
2.5 Hecke eigenforms 11
3 Atkin and Swinnerton-Dyer congruences for noncongruence subgroups
12
3.1 Noncongruence subgroups 13
3.2 Atkin and Swinnerton-Dyer congruence 13
4 Atkin and Swinnerton-Dyer congruences associated to Fermat curves
17
4.1 Fermat curve 17
4.2 Case x^6+y^6=1 18
5 References 24

[1] A.O.L. Atkin, H.P.F. Swinnerton-Dyer, Modular forms On non-congruence subgroups, Combinatorics (Proceedings of the Symposium on Pure Mathematics, Vol. XIX, University of California, Los Angeles, CA, 1968), American Mathematical Society, Providence, RI, 1971, pp. 1-25.
[2] F. Diamond J. Shurman, A First Course in Modular Forms, Springer, 2005.
[3] K.-I Hashimoto, L. Long, Y. Yang, Jacobsthal identity for Q(sqrt(2)), Forum Mathematicum, doi:10.1515/FORM.2011.102.
[4] W.-C. W. Li, L. Long, Z. Yang, On Atkin-Swinnerton-Dyer congruence
relations, J. Number Theory 113 (2005), no. 1, 117-148.
[5] L. Long, The nite index subgroups of the modular group and their modular forms,Fields institute Communications, American Mathematical Society Volume 54 (2008), pp 83-102.
[6] A.J. Scholl, Modular forms and de Rham cohomology; AtkinVSwinnerton-Dyer congruences, Invent. Math. 79 (1985) 49-77.
[7] A.J. Scholl, Modular forms on noncongruence subgroups. Seminaire de Theorie des Nombres, Paris 1985-86, Progress in Mathematics, Vol. 71, Birkhauser, Boston, MA, 1987, pp. 199-206.
[8] A.J. Scholl, The l-adic representations attached to a certain non-congruence subgroup, J. Reine Angew. Math. 392 (1988) 1-15.
[9] J.H. Silverman, The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
[10] T. Yang, Cusp form of weight 1 associated to Fermat curves, Duke Math J. 83 (1996), 141-156.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top