|
[1] A.O.L. Atkin, H.P.F. Swinnerton-Dyer, Modular forms On non-congruence subgroups, Combinatorics (Proceedings of the Symposium on Pure Mathematics, Vol. XIX, University of California, Los Angeles, CA, 1968), American Mathematical Society, Providence, RI, 1971, pp. 1-25. [2] F. Diamond J. Shurman, A First Course in Modular Forms, Springer, 2005. [3] K.-I Hashimoto, L. Long, Y. Yang, Jacobsthal identity for Q(sqrt(2)), Forum Mathematicum, doi:10.1515/FORM.2011.102. [4] W.-C. W. Li, L. Long, Z. Yang, On Atkin-Swinnerton-Dyer congruence relations, J. Number Theory 113 (2005), no. 1, 117-148. [5] L. Long, The nite index subgroups of the modular group and their modular forms,Fields institute Communications, American Mathematical Society Volume 54 (2008), pp 83-102. [6] A.J. Scholl, Modular forms and de Rham cohomology; AtkinVSwinnerton-Dyer congruences, Invent. Math. 79 (1985) 49-77. [7] A.J. Scholl, Modular forms on noncongruence subgroups. Seminaire de Theorie des Nombres, Paris 1985-86, Progress in Mathematics, Vol. 71, Birkhauser, Boston, MA, 1987, pp. 199-206. [8] A.J. Scholl, The l-adic representations attached to a certain non-congruence subgroup, J. Reine Angew. Math. 392 (1988) 1-15. [9] J.H. Silverman, The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009. [10] T. Yang, Cusp form of weight 1 associated to Fermat curves, Duke Math J. 83 (1996), 141-156.
|