( 您好!臺灣時間:2021/03/06 23:25
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Huang, Cheng-Yu
論文名稱(外文):Exposure of engineered nano-sized and respirable particles at different workplaces
指導教授(外文):Tsai, Chuen-Jinn
外文關鍵詞:exposure assessmentaerosol samplingnanoparticlerespirable particlerotating drum test
  • 被引用被引用:1
  • 點閱點閱:303
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本研究在三個不同工程奈米微粒相關的作業場所進行工程奈米微粒及可呼吸性微粒暴露量測,包括奈米二氧化矽氧化樹酯封裝材料製造廠的粉體混料區及奈米碳黑和奈米碳酸鈣粉體製造廠的粉體包裝區。結果顯示奈米微粒質量濃度在碳黑粉體製造廠為最高,主要原因柴油堆高機的廢氣中含有大量的奈米微粒。在奈米二氧化矽氧化樹酯封裝材料製造廠所測到的可呼吸性微粒質量濃度達1963±1051 ?慊/m3,比奈米碳黑及奈米碳酸鈣的159±52及154±74?n?慊/m3高很多,主要原因在於此工作場所逸散出的奈米微粒較多,且作業空間未使用有效的通風系統。此外在這三個作業場所中所量測到的質量中間氣動粒徑為4.6~6.1 ?慆,屬於超微米範圍而不是奈米尺度,此結果可由化學分析和旋轉腔體分散方法得到驗證。對於奈米微粒數目濃度而言,本研究發現只有在奈米粉體處理過程中或是柴油堆高機的廢氣才會導致作業場所中的奈米微粒數目濃度升高,在其餘時間其濃度皆維持在背景值附近。由穿透式電子顯微鏡的分析可知奈米微粒確實存在,然而現場量測及粉體分散之結果均顯示,奈米微粒的數目濃度雖高於微米級微粒,但由於奈米微粒聚集成微米級微粒之故,致使其質量濃度很低。因此本研究建議對於奈米粉體的作業場所的暴露評估,應同時兼顧奈米及可呼吸性微粒的數目及質量濃度。
In this study, engineered nanoparticle (ENP) and respirable particles exposure measurements were conducted at three different ENP-related workplaces, including the mixing area of nano-SiO2 epoxy molding compound plant, two bagging areas of the nano-CaCO3 and nano-carbon black (nano-CB) manufacturing plants. Results show that NP mass concentration at the nano-CB manufacturing plant was the highest due to diesel forklift exhaust. The highest respirable particle mass (RPM) concentration was observed to be 1591±1051 ?慊/m3 at the nano-SiO2 epoxy molding compound plant, which was much higher than 159±52 and 154±74?n?慊/m3 at the bagging areas of the nano-CB and nano-CaCO3, respectively, due to higher NP emission rate and ineffective ventilation system at this location. The mass median aerodynamic diameters (MMADs) at these workplaces were supermicron rather than nano-sized, which was also confirmed by chemical analysis of the collected particles and the results of the rotating drum testing. The NP number concentration maintained at background level unless there were material handling activities or if the diesel forklifts were used in the workplaces. The TEM analysis showed that nano-sized particles indeed existed. However both the field exposure data and results of rotation drum test showed that although nanoparticle concentration was much higher than that of supermicron particles, its mass concentration was much lower due to agglomeration of nanoparticle into micron-sized particles. Therefore, it is suggested that both number and mass concentrations of nano-sized and respirable particles be considered when assessing the exposure of nanopowder-related workplaces.
1.1 Toxicity of nanoparticles 1
1.2 Workplace measurement methods 2
1.3 Dustiness test 3
1.4 Objectives of this study 3
2.1 Sampling site description 5
2.2 Sampling and analytical method 6
2.3 Dustiness test 8
3.1 Respirable particle mass concentrations and mass distributions 10
3.2 NP concentrations 10
3.3 Chemical compositions 11
3.4 Dustiness Test 12
Aitken, R. J., Creely, K. S., Tran, C. L., 2004, Nanoparticles: an occupational hygiene review, Edinburgh: Institute of Occupational Medicine (IOM).
Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, m . P., Waggoner, A. S., 2004, Noninvasive imaging of quantum dots in mice, Bioconjugate Chem.; 15: 79-86.
Brouwer, D. H., Gijsbers, J. H. J., Lurvink, M. W. M., 2004, Personal exposure to ultrafine particles in the workplaces: exploring sampling techniques and strategies, Ann. Occup. Hyg.; 48: 439-453.
Brouwer, D. D., Links, I. H., de Vreede, S. A., Christopher, Y., 2006, Size selective dustiness and exposure; simulated woprkplace comparisons, Ann. Occup. Hyg.; 50: 455-452.
Brouwer, D., 2010, Exposure to manufactured nanoparticle in different workplaces, Toxicology; 269: 120-127.
Cagle, D. W., Kennel, S. J., Mirzaden, S., Alford, J. M., Wilson, L. J., 1999, In vivo studies of fullerence-based materials using endohedral metallfullerence radiotracers, Proc. Natl. Acad. Sci. USA; 96: 5182-5187.
CEN, 2006, EN 15051 Workplace atmospheres-measurement of the dustiness of bulk materials-requirements and test methods. Comité Européen de Normalisation, Brussels, Belgium.
Chen, S. J., Tsai, C. J., Huang, C. Y., Chen, H. D., Chen, S. J., Lin, C. C., Tsai, J. H., Chou, C. K., Lung, S. C., Huang, W. R., Roam, G. D., Wu, W. Y., Dzumbova, L., 2010, Chemical mass closure and chemical characteristics of ambient ultrafine particles and other PM fractions, Aerosol Sci. Technol.; 44: 713-723.
Donalson, K., Li, X. Y., MacNee, W., 1998, Ultrafine (nanometer) particle mediated lung injury, J. Aerosol. Sci.; 29(5/6): 553-560.
Heitbrink, W. A., Todd, W. F., Cooper, T. C., O’Brin, D. M., 1990, The application of dustiness tests to the prediction of worker dust exposure, Am. Ind. Hyg. Assoc. J.; 51(4): 217-223.
Huang, C. H., Tai, C. Y., Huang C. Y., Tsai, C. J., Chen, C. W., Chang, C. P., Shim, T. S., 2010, Measurements of respirable dust and nanoparticle concentrations in a titanium dioxide pigment production factory, J. Environ. Sci. Health A; 45(10): 1227-1233.
Kuhlbusch, T. A. J., Neumann, S., Fissan, H., 2004, Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production, J. Occup. Environ. Hyg.; 1: 660–671.
Mark, D., 2005, The use of reliable measurements of dustiness of chemicals in selecting the most appreciate dust control technology, IOHA, 2005 Pilanesberg; S2-3
Maynard, A. D., Baron, P. A., Foley, M., Shvedova, A. A., Kisin, E. R., Castranova, C., 2004, Exposure to carbon nanotube material: aerosol release during handling of unrefined single-walled carbon nanotube material, J. Toxicol. Eviron. Health A; 67: 97-107
Maynard, A. D., Kuempel, E. D., 2005, Airbrone nanostructed particles and occupational health, J. Nanopart. Res.; 7: 587-614.
Methner, M., Hodson, L., Geraci, C., 2010a, Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials-Part A, J. Occup. Eviron. Hyg.; 7: 127-132.
Methner, M., Hodson, L., Danes, A., Geraci, C., 2010b, Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials-Part B: results from 12 field studies, J. Occup. Eviron. Hyg.; 7: 163-176.
Nemmar, A., Hoylaerts, M. F., Hoet, P. H. M., Nemery, B., 2004, Possible mechanisms of the cardiovascular effect of inhaled particles: system translocation and prothrombotic effects, Toxicol. Lett.; 149: 243-253.
NIOSH, NIOSH Manual of Analytical Methods 5040. Available at: http://www.cdc.gov/niosh/nmam/pdfs/5040f3.pdf
NIOSH, 1994, Elements by ICP: Method 7300, Issue 2, NIOSH Manual of analytical methods (NMAM), Forth edition. U.S.
Oberdöster, G., Oberdöster, E., Oberdöster, J., 2005, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Eviron. Health Perspect.; 113: 823-839.
PEN, The Project on Emerging Nanotechnologies, Available from http://www.nanotechproject.org/inventories/
Peters, T., Heitbrink, W. A., Evans, D. E., Slavin, T. J., Maynard, A. D., 2006, The mapping of fine and ultrafine particle concentrations in an engine machining and assembly plant, Ann. Occup. Eviron. Hyg.; 50(3): 249-257.
Peters, T. M., Elzey, S., Johnson, R., Park, H., Grassian, V., Maher, T., O’Shaughnessy, P., 2009, Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety, J. Occup. Environ. Hyg.; 6: 73-81.
Petavatzi E., Kingman S. W., Lowndes, I. S., 2007, Assessment of the dustiness and the dust liberation mechanisms of limestone quarry operations, Chem. Eng. Process; 46: 1412-1423.
Schneider, T., Jensen, K. A., 2008, Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum, Ann. Occup. Hyg.; 52(1): 23-34.
Schulte, P., Geraci, C., Zumwalde, R., Hoover, M., Kuempel, E., 2008, Occupational risk management of engineered nanoparticles, J. Occup. Eviron. Hyg.; 5: 239-249.
The Royal Society, 2004, Nanoscience and nanotechnology opportunities and uncertainties RS policy document 19/04. London: the Royal Society and Royal Academy of Engineering.
Tielemans, E., Schneider, T., Goede, H., Tischer, M., Warren, N., Kromhout, H., Van Tongeren, M., Van Hemmen, J., Cherrie, J. W., 2008, Conceptual model for assessment of inhalation exposure: defining modifying factors, Ann. Occup. Hyg.; 52: 577-586.
Tsai, C. J., Shiau, H, G., Lin, K. C., Shih, T. S., 1999a, Effect of deposited particles and particle charge on the penetration of small sampling cyclones, J. Aerosol. Sci.; 30(3); 313-323.
Tsai, C. J., Shiau, H. G., Shih, T. S., 199b, Field study of the accuracy of two respirable sampling cyclones, Aerosol Sci. Technol.; 31: 463-472.
Tsai, C. J., Pui, D. Y. H., 2009a, Recent advances and new challenges of occupational and environmental health of nanotechnology, J. Nanopart. Res.; 11(1): 1-4.
Tsai, C. J., Wu, C. H., Leu, M. L., Chen, S. C., Huang, C. Y., Tsai, P. J., Ko, F. H., 2009b, Dustiness test of nanopowders using a standard rotating drum with a modified sampling train, J. Nanopart. Res.; 11(1): 121-131.
Zhu, C. S., Chen, C. C., Cao, J. J., Tsai, C. J., Chou, C. K., Liu, S. C., Roam, G. D., 2010, Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel, Atmos. Environ.; 44: 2668-2673.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔