(3.239.33.139) 您好!臺灣時間:2021/03/08 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:杜若思
研究生(外文):Rosa Amarilis Dubón Mazariegos
論文名稱:利用海水沉澱法所製備之碳酸鈣與碳酸鎂捕獲二氧化碳
論文名稱(外文):Sea water precipitated calcium and magnesium oxides sorbents for CO2 capture
指導教授:白曛綾
指導教授(外文):Bai, Hsunling
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:78
中文關鍵詞:
外文關鍵詞:CO2 capture and storage (CCS)greenhouse gasgreenhouse effectlimestonecalcium oxidechemical looping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Calcium based sorbent for cyclic calcination/carbonation is considered as one of the promising CO2 capture technologies. But the prevention of CaO sintering and deterioration is a challenge for the development of CaO technology. In the present study the mechanical mixing method between sea water precipitated CaO and MgO to enhance the sorption capacity during cyclic capture is demonstrated. The cyclic CO2 capture capacities of the sorbents were evaluated by thermo gravimetric analysis (TGA). The results indicated that by adding only 5 wt. % of MgO into the CaO sorbent (CaO-MgO), the CO2 absorbed amount can be improved by 17% compared to the original CaO sorbent. Instead of passing CO2 only during the sorption period, passing CO2 right after the calcination process is completed (i.e. during the cooling and sorption periods) can greatly improve the capacity and stability of the cyclic absorption. The heating and cooling rates also affect the sorbent performance significantly.
CHAPTER ONE INTRODUCTION 1
1.1 Research background 1
1.2 Motivation 3
1.3 Objectives 4
CHAPTER TWO LITERATURE REVIEW 5
2.1 System to Capture CO2 5
2.1.1 Capture from industrial process streams 5
2.1.2 Pre combustion capture 6
2.1.3 Post combustion capture 7
2.1.4 Oxy fuel combustion capture 9
2.2 Types of CO2 capture technologies 10
2.2.1 Separation with sorbents/solvents 11
2.2.2 Separation with membranes 12
2.2.3 Distillation of a liquefied gas stream and refrigerated separation 12
2.3 Modes of CO2 storage 12
2.4 CO2 utilization 13
2.4.1 New process for CO2 abatement 14
2.4.2 Capture of CO2 in biomass (plants and algae) 14
2.4.3 Mineral carbonation 15
2.5 Carbon dioxide capture sorbents 15
2.6 Absorption system to capture CO2 16
2.7 Carbonation and calcination cycles in the CaO-CO2 absorption process 18
2.8 Sorbent deactivation 21
2.9 Cost assessments 22
2.10 Magnesium carbonate 22
2.11 CaO sorbents mixed with other metals 23
CHAPTER THREE EXPERIMENTAL METHOD 26
3.1 Procedure and method 26
3.2 Sorbent preparation technique 26
3.3 Characterization 29
3.4 Equipment and chemicals component 30
3.5 Experimental apparatus TGA System 30
3.6 Packed column test system 33
CHAPTER FOUR RESULTS AND DISCUSSION 35
4.1 Characterization 35
4.1.1 X-ray diffraction (XRD). 35
4.1.2 ICP-MS analysis 37
4.1.3 BET surface area analysis 38
4.2 CO2 absorption temperature range 41
4.2.1 Determination of the optimal absorption temperature 41
4.2.2 Effect of the cooling rate to determinate the optimal absorption temperature 44
4.3 Desorption temperature 45
4.4 CO2 absorption at constant absorption temperatures 47
4.5 Cyclic test at different absorption temperatures 49
4.6 Effect of heating and cooling rate 51
4.6.1 Effect of cooling rate on the CO2 absorption process at 20°C/min and 60°C/min 51
4.6.2 Effect of heating rate in the CO2 absorption process at 40 k/min, 50 k/min and 60 k/min 52
4.7 Effect of passing CO2 in the cooling process. 53
4.8 Mixture of CaCO3 (95%) and MgCO3 (5%) 54
4.9 SEM images CaCO3 after CO2 23 cycles at different temperatures 60
4.10 SEM images Mg-Ca Mixture after CO2 after carbonation/calcinations cycles at 700°C using TGA 63
4.11 Packed column adsorption test 64
CHAPTER FIVE CONCLUSIONS AND RECOMMENDATION 68
5.1 Conclusions 68
5.2 Recommendation 69
REFERENCES 70
Abanades, J.C. and Alvarez, D. (2003). Conversion Limits in the Reaction of CO2 with Lime. Energy and Fuels, 17(2), 308-315.
Abanades, J.C, G. Grasa, M. Alonso, N. Rodriguez, E. J Anthony, and L.M Romeo. (2007). Cost Structure of a Postcombustion CO2 Capture System Using CaO. Environmental Science and Technology, 41(15), 5523-5527.
Abanades, Juan C., E. S. Rubin, and E.J. Anthony (2004). Sorbent Cost and Performance in CO2 Capture Systems. Industrial and Engineering Chemistry Research, 43(13), 3462-3466.
Albrecht, K.O., K.S. Wagenbach, J.A. Satrio, B.H. Shanks, and T. D. Wheelock. (2008). Development of a CaO-Based CO2 Sorbent with Improved Cyclic Stability. Industrial and Engineering Chemistry Research, 47(20), 7841-7848.
Alvarez, D. and Abanades, J.C., (2005). Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2. Industrial and Engineering Chemistry Research, 44(15), 5608-5615.
Arakawa, H., (1998). Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. In M. A. T. Inui and T. Yamaguchi, eds. Advances in Chemical Conversions for Mitigating Carbon Dioxide. Elsevier, pp. 19 - 30.
Barker, R., (1973). The reversibility of the reaction CaCO3--> CaO+CO2. Journal of Applied Chemistry and Biotechnology, 23(10), 733-742.
Benemann, J., (1997). CO2 mitigation with microalgae systems. Energy Conversion and Management, 38, 475-479.
Bhatia, S.K. and Perlmutter, D.D., (1983). Effect of the product layer on the kinetics of the CO2-lime reaction. AIChE Journal, 29(1), 79-86.
Borgwardt, R., (1989). Sintering of nascent calcium oxide. Chemical Engineering Science, 44(1), 53-60.
Botha, A., and C. A. Strydom. (2001). Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy 62, (3),175-183.
Butt, D.P., K. S. Lackner, C.H. Wendt, S.D. Conzone, H. Kung, Y.C. Lu, and J. K. Bremser. (1996). Kinetics of Thermal Dehydroxylation and Carbonation of Magnesium Hydroxide. Journal of the American Ceramic Society, 79(7), 1892-1898.
Chen, T., Neville, A. and Yuan, M., (2006). Influence of Mg2+ on CaCO3 formation--bulk precipitation and surface deposition. Chemical Engineering Science, 61(16), 5318-5327.
Chen, Y.T., M. Karthik, and H. Bai. (2009) . Modification of CaO by Organic Alumina Precursor for Enhancing Cyclic Capture of CO2 Greenhouse Gas. Journal of Environmental Engineering 135, (6), 459-464.
Chrissafis, K, and K.M Paraskevopoulos. (2005b). the effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. Journal of thermal analysis and calorimetry. 81(2),: 463-468.
Chrissafis, K., C. Dagounaki, and K.M. Paraskevopoulos. 2005a. the effects of procedural variables on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. Thermochimica Acta 428: 193-198.
Diagne, D., Goto, M. and Hirose, T., (1995). Experimental Study of Simultaneous Removal and Concentratio of CO2 by an Improved Pressure Swing Adsorption Process. ENERGY CONVERSION AND MANAGEMENT, 36(6-9), 431-434.
Fang, F., Li, Z. and Cai, N., (2009a). Experiment and Modeling of CO2 Capture from Flue Gases at High Temperature in a Fluidized Bed Reactor with Ca-Based Sorbents. Energy and Fuels, 23(1), 207-216.
Fang, F., Li, Z. and Cai, N., (2009b). CO2 capture from flue gases using a fluidized bed reactor with limestone. Korean Journal of Chemical Engineering, 26(5), 1414-1421.
Feng, B., An, H. and Tan, E., (2007). Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems†. Energy and Fuels, 21(2), 426-434.
Freund, P., (2003). Making deep reductions in emissions from coal-fired power plant using capture and storage of CO2. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217(1), 1-7.
Gabelman, A. and Hwang, S.T., (1999). Hollow fiber membrane contactors. Journal of Membrane Science, 159, 61-106.
Glasson, D.R., (1958). Reactivity of lime and related oxides. I. Production of calcium oxide. Journal of Applied Chemistry, 8(12), 793-797.
Gomes, V. and Yee, K., (2002). Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Separation and Purification Technology, 28(2), 161-171.
Gupta, H. and Fan, L., (2002). Carbonation−Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas. Industrial and Engineering Chemistry Research, 41(16), 4035-4042.
Grasa, G.S, and J. C. Abanades. (2006). CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles. Industrial & Engineering Chemistry Research 45, (26), 8846-8851.
Halmann, Martin M. and Steinberg, M., (1999). Greenhouse gas carbon dioxide mitigation, CRC Press.
Han, C. and Harrison, D.P., (1994). Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen. Chemical Engineering Science, 49(24, Part 2), 5875-5883.
Hansen, J., M. Sato, P. Kharecha, D.Beerling, R. Berner, V.M Delmotte, M. Pagani, M. Raymo, D.L. Royer, and J.C. Zachos. (2008). Target Atmospheric CO2: Where Should Humanity Aim? The Open Atmospheric Science Journal, 2(1), 217-231.
Hansen, James, solomon, Dahe Q, and S. (2007).Intergovernmental Panel on Climate Change (IPCC).
Hartman, M. and Trnka, O., (2003). Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science, 58(14), 3299-3300.
Hassanzadeh, A. and Abbasian, J., (2010). Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas: 1. Sorbent development, evaluation, and reaction modeling. Fuel, 89(6), 1287-1297.
Hendriks, C.F., (1994). Carbon Dioxide Removal from Coal- Fired Power Plants, Kluwer Academic Publishers.
Hu, N. and Scaroni, A.W., (1996). Calcination of pulverized limestone particles under furnace injection conditions. Fuel, 75(2), 177-186.
Hughes, R.W., D.Lu, E.J. Anthony, and Y.Wu. (2004). Improved Long-Term Conversion of Limestone-Derived Sorbents for In Situ Capture of CO2 in a Fluidized Bed Combustor. Industrial & Engineering Chemistry Research 43 (18), 5529-5539
Inui, T., M. Anpo, K. Izui, S. Yanagida, and T. Yamaguchi. (1998). Advances in Chemical Conversions for Mitigating Carbon Dioxide, Elsevier Science.
IPCC, (2005). IPCC special report on carbon dioxide capture and storage, Cambridge University Press.
Ishibashi, M, H Ota, N Akutsu, S Umeda, M Tajika, J Izumi, A Yasutake, T Kabata, and Y Kageyama. (1996). Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy conversion and management, 37(6-8), 929-933.
Johnsen, K., H.J. Ryu, J.R. Grace, and C.J. Lim. (2006). Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor. Chemical Engineering Science, 61(4), 1195-1202.
Lan, C.R. and Horng, Y.Y., (2005). Fixation of Carbon Dioxide by Carbonation with Chemical Precipitation. 12 (4).
Larson, E.D., (1993). Technology for Electricity and Fuels from Biomass. Annual Review of Energy and the Environment, 18(1), 567-630.
Li, L. D. L. King, Z.Nie, and C. Howard. (2009).Magnesia-Stabilized Calcium Oxide Absorbents with Improved Durability for High Temperature CO2 Capture. Industrial and Engineering Chemistry Research, 48(23), 10604-10613.
Li, Z.S, N.S Cai, and Y.Y Huang. (2006). Effect of Preparation Temperature on Cyclic CO2 Capture and Multiple Carbonation Calcination Cycles for a New Ca-Based CO2 Sorbent. Industrial & Engineering Chemistry Research 45, no. 6: 1911-1917.
Lin, S.Y, Y. Suzuki, H. Hatano, and M. Harada. (2001). Hydrogen Production from Hydrocarbon by Integration of Water−Carbon Reaction and Carbon Dioxide Removal (HyPr−RING Method). Energy and Fuels, 15(2), 339-343.
Liu, W., B. Feng, Y. Wu, G. Wang, J. Barry, and João C. Diniz da Costa. (2010). Synthesis of Sintering-Resistant Sorbents for CO2 Capture. Environmental Science and Technology, 44(8), 3093-3097.
Liu, W., N.W. L Low, B. Feng, G. Wang, and J. D. da Costa. (2009). Calcium Precursors for the Production of CaO Sorbents for Multicycle CO2 Capture. Environmental Science and Technology, 44(2), 841-847.
Lu, H., P.G. Smirniotis, F.O. Ernst, and S.E. Pratsinis. (2009). Nanostructured Ca-based sorbents with high CO2 uptake efficiency. Chemical Engineering Science, 64(9), 1936-1943.
Maroto, V.M.M, Fauth D.J, Zhang Y., and Andresen J.M. (2005). Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Available at: [Accessed May 19, (2010)].
Miliband, E., (2009). 'Clean' coal plants get go-ahead. BBC. Available at: http://news.bbc.co.uk/2/hi/uk_news/politics/8014295.stm [Accessed June 1, (2010)].
Mimura, T, Simayoshi, H, Suda, Iijima, M, Mituoka, and S. (1997).Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system, Kidlington, ROYAUME-UNI: Elsevier.
Nakagawa, K. and Ohashi, T., (1998). A novel method of CO2 capture from high temperature gases. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 145(4), 1344-1346.
Nakagawa, K. and Ohashi, T., (1998). A Novel Method of CO Capture from High Temperature Gases. Journal of The Electrochemical Society, 145(4), 1344-1346.
Randall M and German, (1996). Sintering theory and practice Wiley., New York,
Romeo, Y.L., P. Lisbona, and A. Martínez. (2009).Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants. Fuel Processing Technology, 90(6), 803-811.
Ronald, B. (1974). The reactivity of calcium oxide towards carbon dioxide and its use for energy storage. Journal of Applied Chemistry and Biotechnology, 24(4-5), 221-227.
Silaban, A., and D. P. Harrison. 1995. High temperature capture of carbon dioxide: Characteristics for the reversible reaction between CaO (s) and CO2 (g). Chemical Engineering Communications 137(1), 177-190.
Silcox, G.D., Kramlich, J.C. and Pershing, D.W., (1989). A mathematical model for the flash calcination of dispersed calcium carbonate and calcium hydroxide particles. Industrial and Engineering Chemistry Research, 28(2), 155-160.
Singh, D., (2003). Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management, 44, 3073-3091.
Song, H., W. Cho., and Lee K., (1998). Adsorption of carbon dioxide on the chemically modified silica adsorbents. Journal of Non-Crystalline Solids, 242(2-3), 69-80.
Stanmore, B. and Gilot, P., (2005). Review--calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Processing Technology, 86(16), 1707-1743.
Symonds, R. T., D.Y. Lu, R.W. Hughes, E. J. Anthony, and A.Macchi. (2009). CO2 Capture from Simulated Syngas via Cyclic Carbonation/Calcination for a Naturally Occurring Limestone: Pilot-Plant Testing. Industrial & Engineering Chemistry Research 48, (18), 8431-8440.
Takamura, Y, S Narita, J Aoki, S Hironaka, and S Uchida. (2001). Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas. Separation and purification Technology, 24(3), 519-528.
Vattenfall, (2008). Vattenfall and CCS – Carbon Capture and Storage Soon a Reality. Available at: http://www.vattenfall.com.
Wang, Y., Lin, S. and Suzuki, Y., (2009). Limestone Calcination with CO2 Capture (III): Characteristics of Coal Combustion during Limestone Decomposition. Energy and Fuels, 23(5), 2804-2809.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔