跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宸嶢
論文名稱:鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究
論文名稱(外文):The physicochemical properties and photocatalytic behavior of the V-doped TiO2 calcined at different temperatures for CO2 reduction
指導教授:張淑閔張淑閔引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:82
中文關鍵詞:二氧化鈦二氧化碳光還原反應
外文關鍵詞:TiO2CO2photoreduction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
近年來,利用光觸媒進行光還原二氧化碳產生燃料之議題備受矚目,其中,有很多研究著重於參雜不純物至光觸媒二氧化鈦裡,藉由不純物減少電子電洞再結合的速率,有效提升二氧化鈦進行光還原二氧化碳的效率。本研究利用溶膠-凝膠法(sol-gel)製備摻雜釩離子的二氧化鈦,探討不同鍛燒溫度(200 °C-700 °C)與不同釩離子濃度(0.01 wt%與1.00 wt%)對二氧化鈦光觸媒結構以及光還原二氧化碳的影響。研究結果顯示TiO2經300 °C鍛燒後呈現銳礦鈦的結構,鍛燒溫度超過600 °C會產生金紅石,而在V/Ti比例高於1 %時,會使金紅石相在500 °C時,提早產生,另外,當鍛燒溫度高於塔曼溫度時,釩會往表面遷移而形成V2O5晶相,SIMS實驗發現,高濃度釩在鍛燒600 °C時表面釩的濃度為鍛燒200 °C時的7.6倍,由EPR及XAS發現,在鍛燒溫度較低的樣品中,內部有三價與四價的釩參雜在二氧化鈦晶格中,而隨著鍛燒溫度增加,釩的價態會逐漸轉變為五價的型態,當鍛燒溫度增加到600 °C,可由GI-XRD觀察到明顯的表面V2O5晶相產生,UV-VIS光譜可發現參雜高濃度釩的樣品可明顯降低TiO2能隙至1.6 eV。在300-500 &;#29301;C鍛燒溫度下,觸媒對0.01 mM Rhodamine B光降解活性依次為0.01 at.% V-doped TiO2> pure TiO2 > 1.00 at.% V-doped TiO2。在光還原二氧化碳的實驗裡,500 °C鍛燒的樣品有最高還原活性,甲烷為還原反應中唯一可測得產物,單純TiO2在反應第一小時有最高CH4量子產率 2.98 %,其次為1.00 at.% V-doped TiO2 (2.65 %) 與0.01at.% V-doped TiO2 (2.44 %),然而,於8小時反應後,各觸媒產生甲烷的量子產率依序為1.00 at.% V-doped TiO2 (0.66 %) >單純TiO2 (0.39 %)~0.01 at.% V-doped TiO2 (0.39 %)。EPR光譜發現,表面電荷於CO2與H2O分子間的轉移迅速,因此具低還原電位的中間產物是限制光催化還原效率的關鍵,表面缺陷造成傳導帶下低還原能力的能階決定釩摻雜二氧化鈦低初始還原活性,而V2O5與TiO2間的異質界面則抑制甲烷再氧化速率。
In this study, the physicochemical properties and photoreduction behavior of the TiO2 samples doped with 0.01 and 1.00 at.% V ions and calined at different temperatures were investigated. The pure TiO2 exhibited anatase phase at 300 °C and underwent phase transition to rutile one at 600 °C. Incorporation of V ions decreased the transition temperature to 500 °C. Calcination greatly increased the surface V/Ti ratio of the doped TiO2 by 7.6 times as the temperature increased from 200 to 600 牵C. The increase in the surface concentration of the V ions also led to the formation of V2O5 moiety. Doping 1.00 at.% V ions dereduced the bandgap energy of the TiO2 from 3.1-3.3 to 1.6 eV. For oxidation of Rhodamine B, the photocatalysts exhibited the activity in the order of 0.01 at% V-doped TiO2 > pure TiO2 > 1.00 at. % V-doped TiO2. The samples calcined at 500 牵C showed the highest activity for CO2 reduction over other temperatures. CH4 was the only detectable product in the reduction systems. After 1 hr irradiation, the pure TiO2 had the highest quantum efficiency (2.98 %) for CH4 generation, followed by 1.00 at.% V-doped TiO2 (2.65 %) and 0.01 at.% V-doped TiO2 (2.44 %). However, the quantum efficiency of the photocatalysts for CH4 yield after 8 hr irradiation was in the order of 1.00 at.% V-doped TiO2 (0.66 %) > pureTiO2 (0.39 %)~0.01 at.% V-doped TiO2 (0.39 %). The EPR results showed that interfacial charge transfer from the photocatalysts to the adsorbed CO2 and H2O is efficient. Thus, the reduced intermediates determined the low reduction efficiency of CO2 to CH4. The impurity levels locating below the conduction band result in slow reduction kinetics., and the presence of V2O5 moiety at the surface inhibited the reoxidation of CH4.
致謝 I
中文摘要 II
Abstract III
Index IV
Table Index VI
Figure Index VII
Chapter 1. Introduction 1
1-1 Motivation 1
1-2 Objectives 2
Chapter 2. Background and Theory 3
2-1 Photocatalysis and Photocatalysts 3
2-1-1 TiO2 photocatalysts 3
2-1-2 Modified TiO2 photocatalysts 8
2-2 V-doped TiO2 photocatalyst 10
2-2-1 Physicochemical properties of V/TiO2 10
2-2-2 Photocatalytic behavior of V/TiO2 12
2-3 Photoreduction of CO2 14
2-3-1 Reduction behavior 14
2-3-2 Reaction mechanism in liquid phase 17
2-3-3 Reaction mechanism in gas phase 17
Chapter 3. Materials and Methods 19
3-1 Materials 19
3-2 Preparation of vanadium doped TiO2 using a sol-gel method 19
3-3 Characterization 20
3-3-1 Specific surface area 20
3-3-2 UV/Vis diffuse reflectance spectroscopy (UV/Vis-DRS) 20
3-3-3 Time-of-Flight Secondary Ion Mass Spectrometer (ToF-SIMS) 21
3-3-4 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 21
3-3-5 X-ray diffractometry 22
3-3-6 X-ray photoelectron spectroscopy (XPS) 22
3-3-7 Electron paramagnetic resonance (EPR) 23
3-3-8 Gas chromatograph (GC) 24
3-3-9 X-ray absorption (XAS) 24
3-4 Photocatalytic reduction of CO2 25
Chapter 4. Results and Discussion 30
4-1 Chemical compositions 30
4-2 Microstructures 38
4-3 UV-Visible absorption 44
4-4 Photocatalytic activity 48
4-5 The discussion of photoreduction and oxidation activity 59
Chapter 5. Conclusions 67
References 68
Appendix A. XPS Analysis 76
Appendix B. EPR Analysis 79
Appendix C. Degradation of RhB 80
Appendix D. Calibration Curve 82
1. Roy, S.C., O.K. Varghese, M. Paulose, and C.A. Grimes, Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. Acs Nano, 2010. 4(3): p. 1259-1278.
2. Di Paola, A., E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani, and L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 2002. 75(1-4): p. 87-93.
3. Klosek, S. and D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. Journal of Physical Chemistry B, 2001. 105(14): p. 2815-2819.
4. Kemp, T.J. and R.A. McIntyre, Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride). Polymer Degradation and Stability, 2006. 91(1): p. 165-194.
5. Bouras, P., E. Stathatos, and P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Applied Catalysis B-Environmental, 2007. 73(1-2): p. 51-59.
6. Wu, J.C.S., T.H. Wu, T.C. Chu, H.J. Huang, and D.P. Tsai, Application of optical-fiber photoreactor for CO2 photocatalytic reduction. Topics in Catalysis, 2008. 47(3-4): p. 131-136.
7. Wang, C.J., R.L. Thompson, J. Baltrus, and C. Matranga, Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. Journal of Physical Chemistry Letters, 2010. 1(1): p. 48-53.
8. Adachi, K., K. Ohta, and T. Mizuno, Photocatalytic Reduction of Carbon-Dioxide to Hydrocarbon Using Copper-Loaded Titanium-Dioxide. Solar Energy, 1994. 53(2): p. 187-190.
9. Choi, W.Y., A. Termin, and M.R. Hoffmann, The Role of Metal-Ion Dopants in Quantum-Sized TiO2 - Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics. Journal of Physical Chemistry, 1994. 98(51): p. 13669-13679.
10. Wachs, I.E., Y. Chen, J.M. Jehng, L.E. Briand, and T. Tanaka, Molecular structure and reactivity of the Group V metal oxides. Catalysis Today, 2003. 78(1-4): p. 13-24.
11. Bronkema, J.L., D.C. Leo, and A.T. Bell, Mechanistic studies of methanol oxidation to formaldehyde on isolated vanadate sites supported on high surface area anatase. Journal of Physical Chemistry C, 2007. 111(39): p. 14530-14540.
12. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5-8): p. 53-229.
13. Schwarzburg, K. and F. Willig, Diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell. Journal of Physical Chemistry B, 2003. 107(15): p. 3552-3555.
14. Sclafani, A. and J.M. Herrmann, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. Journal of Physical Chemistry, 1996. 100(32): p. 13655-13661.
15. Skubal, L.R., N.K. Meshkov, and M.C. Vogt, Detection and identification of gaseous organics using a TiO2 sensor. Journal of Photochemistry and Photobiology a-Chemistry, 2002. 148(1-3): p. 103-108.
16. Usubharatana, P., D. McMartin, A. Veawab, and P. Tontiwachwuthikul, Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research, 2006. 45(8): p. 2558-2568.
17. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995. 95(3): p. 735-758.
18. Kabra, K., R. Chaudhary, and R.L. Sawhney, Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Industrial & Engineering Chemistry Research, 2004. 43(24): p. 7683-7696.
19. Wold, A., Photocatalytic Properties of TiO2. Chemistry of Materials, 1993. 5(3): p. 280-283.
20. Litter, M.I., Heterogeneous photocatalysis - Transition metal ions in photocatalytic systems. Applied Catalysis B-Environmental, 1999. 23(2-3): p. 89-114.
21. Anpo, M. and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 2003. 216(1-2): p. 505-516.
22. Herrmann, J.M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999. 53(1): p. 115-129.
23. Reddy, K.M., B. Baruwati, M. Jayalakshmi, M.M. Rao, and S.V. Manorama, S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 2005. 178(11): p. 3352-3358.
24. Wang, H. and J.P. Lewis, Second-generation photocatalytic materials: anion-doped TiO2. Journal of Physics-Condensed Matter, 2006. 18(2): p. 421-434.
25. Zhao, G.L., H. Kozuka, H. Lin, and T. Yoko, Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin Solid Films, 1999. 339(1-2): p. 123-128.
26. Wu, J.C.S. and C.H. Chen, A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. Journal of Photochemistry and Photobiology a-Chemistry, 2004. 163(3): p. 509-515.
27. Anpo, M., S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, and M. Matsuoka, The preparation and characterization of highly efficient titanium oxide-based photofunctional materials. Annual Review of Materials Research, 2005. 35: p. 1-27.
28. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(37-38).
29. Davidson, A. and M. Che, Temperature-Induced Diffusion of Probe Vanadium(Iv) Ions into the Matrix of Titanium-Dioxide as Investigated by Esr Techniques. Journal of Physical Chemistry, 1992. 96(24): p. 9909-9915.
30. Rodella, C.B., P.A.P. Nascente, V.R. Mastelaro, M.R. Zucchi, R.W.A. Franco, C.J. Magon, P. Donoso, and A.O. Florentino, Chemical and structural characterization of V2O5/TiO2 catalysts. Journal of Vacuum Science & Technology A, 2001. 19(4): p. 1158-1163.
31. Zhao, G.L., G.R. Han, M. Takahashi, and T. Yoko, Photoelectrochemical properties of sol-gel-derived Ti1-xVxO2 solid solution film photoelectrodes. Thin Solid Films, 2002. 410(1-2): p. 14-20.
32. Izumi, Y., K. Konishi, T. Miyajima, and H. Yoshitake, Photo-oxidation over mesoporous V-TiO2 catalyst under visible light monitored by vanadium K beta(5,2)-selecting XANES spectroscopy. Materials Letters, 2008. 62(6-7): p. 861-864.
33. Xu, J.J., Y.H. Ao, M.D. Chen, D.G. Fu, and C.W. Yuan, Photocatalytic activity of vanadium-doped titania-activated carbon composite film under visible light. Thin Solid Films, 2010. 518(15): p. 4170-4174.
34. Hoffmann, M.R., J. Choi, and H. Park, Combinatorial doping of TiO(2) with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation. Journal of Materials Research, 2010. 25(1): p. 149-158.
35. Chang, S.-m. and W.-s. Liu, Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Applied Catalysis B: Environmental, 2011. 101: p. 333-342.
36. Alyea, E.C., L.J. Lakshmi, and Z. Ju, Spectroscopic and activity studies on vanadia supported on titania and phosphorus-modified titania. Langmuir, 1997. 13(21): p. 5621-5626.
37. Izumi, Y., F. Kiyotaki, N. Yagi, A.M. Vlaicu, A. Nisawa, S. Fukushima, H. Yoshitake, and Y. Iwasawa, X-ray absorption fine structure combined with X-ray fluorescence spectrometry. Part 15. Monitoring of vanadium site transformations on Titania and in mesoporous titania by selective detection of the vanadium K alpha(1) fluorescence. Journal of Physical Chemistry B, 2005. 109(31): p. 14884-14891.
38. Wachs, I.E., J.M. Jehng, and W. Ueda, Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts. Journal of Physical Chemistry B, 2005. 109(6): p. 2275-2284.
39. Bulushev, D.A., L. Kiwi-Minsker, V.I. Zaikovskii, and A. Renken, Formation of active sites for selective toluene oxidation during catalyst synthesis via solid-state reaction of V2O5 with TiO2. Journal of Catalysis, 2000. 193(1): p. 145-153.
40. Hansen, J.E., Scientific reticence and sea level rise. Environmental Research Letters, 2007. 2(2): p. -.
41. Chisti, Y., Biodiesel from microalgae. Biotechnology Advances, 2007. 25(3): p. 294-306.
42. Galvez, M.E., P.G. Loutzenhiser, I. Hischier, and A. Steinfeld, CO2 splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions: Thermodynamic analysis. Energy & Fuels, 2008. 22(5): p. 3544-3550.
43. Bamberger, C.E. and P.R. Robinson, Thermochemical Splitting of Water and Carbon-Dioxide with Cerium Compounds. Inorganica Chimica Acta-Articles, 1980. 42(1): p. 133-137.
44. Inoue, T., A. Fujishima, S. Konishi, and K. Honda, Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature, 1979. 277(5698): p. 637-638.
45. Halmann, M., Photoelectrochemical Reduction of Aqueous Carbon-Dioxide on P-Type Gallium-Phosphide in Liquid Junction Solar-Cells. Nature, 1978. 275(5676): p. 115-116.
46. Anpo, M., H. Yamashita, Y. Ichihashi, and S. Ehara, Photocatalytic Reduction of CO2 with H2O on Various Titanium-Oxide Catalysts. Journal of Electroanalytical Chemistry, 1995. 396(1-2): p. 21-26.
47. Sayama, K. and H. Arakawa, Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon-Dioxide over ZrO2 Catalyst. Journal of Physical Chemistry, 1993. 97(3): p. 531-533.
48. Lo, C.C., C.H. Hung, C.S. Yuan, and J.F. Wu, Photoreduction of carbon dioxide with H-2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells, 2007. 91(19): p. 1765-1774.
49. Halmann, M., M. Ulman, and B. Aurianblajeni, Photochemical Solar Collector for the Photoassisted Reduction of Aqueous Carbon-Dioxide. Solar Energy, 1983. 31(4): p. 429-431.
50. Tseng, I.H., W.C. Chang, and J.C.S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B-Environmental, 2002. 37(1): p. 37-48.
51. Mizuno, T., K. Adachi, K. Ohta, and A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology a-Chemistry, 1996. 98(1-2): p. 87-90.
52. Lacombe, S., H. Cardy, N. Soggiu, S. Blanc, J.L. Habib-Jiwan, and J.P. Soumillion, Diffuse reflectance UV-Visible spectroscopy for the qualitative and quantitative study of chromophores adsorbed or grafted on silica. Microporous and Mesoporous Materials, 2001. 46(2-3): p. 311-325.
53. Uvarov, V. and I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Materials Characterization, 2007. 58(10): p. 883-891.
54. Surnev, S., M.G. Ramsey, and F.P. Netzer, Vanadium oxide surface studies. Progress in Surface Science, 2003. 73(4-8): p. 117-165.
55. Yamashita, H., Y. Ichihashi, M. Takeuchi, S. Kishiguchi, and M. Anpo, Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. Journal of Synchrotron Radiation, 1999. 6: p. 451-452.
56. Silversmit, G., J.A. van Bokhoven, H. Poelman, A.M.J. van der Eerden, G.B. Marin, M.F. Reyniers, and R. De Gryse, The structure of supported and unsupported vanadium oxide under calcination, reduction and oxidation determined with XAS. Applied Catalysis a-General, 2005. 285(1-2): p. 151-162.
57. Bordage, A., E. Balan, J.P.R. de Villiers, R. Cromarty, A. Juhin, C. Carvallo, G. Calas, P.V.S. Raju, and P. Glatzel, V oxidation state in Fe-Ti oxides by high-energy resolution fluorescence-detected X-ray absorption spectroscopy. Physics and Chemistry of Minerals, 2011. 38(6): p. 449-458.
58. J. Wong, F.W.L., R. P. Messmer and D. H. Maylotte, K-edge absorption spectra of selected vanadium compounds. Physical review B, 1984. 30(10): p. 5596-5611.
59. Izumi, Y., K. Konishi, D.M. Obaid, T. Miyajima, and H. Yoshitake, X-ray absorption fine structure combined with X-ray fluorescence spectroscopy. Monitoring of vanadium sites in mesoporous titania, excited under visible light by selective detection of vanadium K beta(5,2) Fluorescence. Analytical Chemistry, 2007. 79(18): p. 6933-6940.
60. Silversmit, G., H. Poelman, I. Sack, G. Buyle, G.B. Marin, and R. De Gryse, An in-situ reduction/oxidation XAS study on the EL10V8 VOx/TiO2(Anatase) powder catalyst. Catalysis Letters, 2006. 107(1-2): p. 61-71.
61. Frank, P., E.J. Carlson, R.M.K. Carlson, B. Hedman, and K.O. Hodgson, The uptake and fate of vanadyl ion in ascidian blood cells and a detailed hypothesis for the mechanism and location of biological vanadium reduction. A visible and X-ray absorption spectroscopic study. Journal of Inorganic Biochemistry, 2008. 102(4): p. 809-823.
62. Rodella, C.B. and V.R. Mastelaro, Structural characterization of the V2O5/TiO2 system obtained by the sol-gel method. Journal of Physics and Chemistry of Solids, 2003. 64(5): p. 833-839.
63. Balikdjian, J.P., A. Davidson, S. Launay, H. Eckert, and M. Che, Sintering and phase transformation of V-loaded anatase materials containing bulk and surface V species. Journal of Physical Chemistry B, 2000. 104(38): p. 8931-8939.
64. Bentrup, U., A. Bruckner, C. Rudinger, and H.J. Eberle, Elucidating structure and function of active sites in VOx/TiO2 catalysts during oxyhydrative scission of 1-butene by in situ and operando spectroscopy. Applied Catalysis a-General, 2004. 269(1-2): p. 237-248.
65. Li, C.Z., B.Z. Tian, F. Gu, H.B. Jiang, Y.J. Hu, and J.L. Zhang, Flame sprayed V-doped TiO(2) nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chemical Engineering Journal, 2009. 151(1-3): p. 220-227.
66. Gratzel, M. and R.F. Howe, Electron-Paramagnetic Resonance Studies of Doped Tio2 Colloids. Journal of Physical Chemistry, 1990. 94(6): p. 2566-2572.
67. Chary, K.V.R., G. Kishan, T. Bhaskar, and H. Sivaraj, Structure and reactivity of vanadium oxide catalysts supported on anatase TiO2. Journal of Physical Chemistry B, 1998. 102(35): p. 6792-6798.
68. Howe, R.F. and M. Gratzel, Electron-Paramagnetic-Res Study of Hydrated Anatase under Uv Irradiation. Journal of Physical Chemistry, 1987. 91(14): p. 3906-3909.
69. Nakaoka, Y. and Y. Nosaka, ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology a-Chemistry, 1997. 110(3): p. 299-305.
70. Hurum, D.C., K.A. Gray, T. Rajh, and M.C. Thurnauer, Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms (vol 109B, pg 980, 2005). Journal of Physical Chemistry B, 2005. 109(11): p. 5388-5388.
71. Kumar, C.P., N.O. Gopal, T.C. Wang, M.S. Wong, and S.C. Ke, EPR investigation of TiO2 nanoparticles with temperature-dependent properties. Journal of Physical Chemistry B, 2006. 110(11): p. 5223-5229.
72. Coronado, J.M., A.J. Maira, J.C. Conesa, K.L. Yeung, V. Augugliaro, and J. Soria, EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir, 2001. 17(17): p. 5368-5374.
73. Martin, S.T., C.L. Morrison, and M.R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles. Journal of Physical Chemistry, 1994. 98(51): p. 13695-13704.
74. Hibino, M., M. Ugaji, A. Kishimoto, and T. Kudo, Preparation and Lithium Intercalation of a New Vanadium-Oxide with a 2-Dimensional Structure. Solid State Ionics, 1995. 79: p. 239-244.
75. Oliveri, G., G. Ramis, G. Busca, and V.S. Escribano, Thermal-Stability of Vanadia-Titania Catalysts. Journal of Materials Chemistry, 1993. 3(12): p. 1239-1249.
76. del Val, S., M.L. Granados, J.L.G. Fierro, J. Santamaria-Gonzalez, A.J. Lopez, and T. Blasco, alpha-TiP-supported vanadium oxide catalysts: Influence of calcination pretreatments on structure and performance for o-xylene oxidation. Journal of Catalysis, 2001. 204(2): p. 466-478.
77. Amores, J.M.G., V.S. Escribano, and G. Busca, Anatase Crystal-Growth and Phase-Transformation to Rutile in High-Area TiO2, MoO3-TiO2 and Other Tio2-Supported Oxide Catalytic-Systems. Journal of Materials Chemistry, 1995. 5(8): p. 1245-1249.
78. Balikdjian, J.P., A. Davidson, S. Launay, H. Eckert, and M. Che, Sintering and phase transformation of V-loaded anatase materials containing bulk and surface species (vol 104B, pg 8931, pg 2000). Journal of Physical Chemistry B, 2001. 105(49): p. 12432-12432.
79. Choi, J., H. Park, and M.R. Hoffmann, Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. Journal of Physical Chemistry C, 2010. 114(2): p. 783-792.
80. Luan, Z.H. and L. Kevan, Electron spin resonance and diffuse reflectance ultraviolet-visible spectroscopies of vanadium immobilized at surface titanium centers of titanosilicate mesoporous TiMCM-41 molecular sieves. Journal of Physical Chemistry B, 1997. 101(11): p. 2020-2027.
81. Zheng, S., L. Gao, Q.H. Zhang, W.P. Zhang, and J.K. Guo, Preparation, characterization and photocatalytic properties of singly and doubly titania-modified mesoporous silicate MCM-41 by varying titanium precursors. Journal of Materials Chemistry, 2001. 11(2): p. 578-583.
82. Li, Y., T.J. White, and S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles. Journal of Solid State Chemistry, 2004. 177(4-5): p. 1372-1381.
83. Yu, J.G., H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, and W.K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. Journal of Physical Chemistry B, 2003. 107(50): p. 13871-13879.
84. Li, Y., W.N. Wang, Z.L. Zhan, M.H. Woo, C.Y. Wu, and P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B-Environmental, 2010. 100(1-2): p. 386-392.
85. Varghese, O.K., M. Paulose, T.J. LaTempa, and C.A. Grimes, High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters, 2009. 9(2): p. 731-737.
86. Ikeue, K., S. Nozaki, M. Ogawa, and M. Anpo, Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catalysis Letters, 2002. 80(3-4): p. 111-114.
87. Coronado, J.M., A.J. Maira, A. Martinez-Arias, J.C. Conesa, and J. Soria, EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. Journal of Photochemistry and Photobiology a-Chemistry, 2002. 150(1-3): p. 213-221.
88. Manivannan, A., G. Glaspell, and P. Dutta, Synthesis of nanocrystalline TiO2 particles and their structural characteristics. Journal of Cluster Science, 2008. 19(2): p. 391-399.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊