(3.237.178.91) 您好!臺灣時間:2021/03/07 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施伯宗
研究生(外文):Shih, Po-Tsung
論文名稱:超高頻光毫米波產生與60-GHz光載微波無線訊號系統
論文名稱(外文):Ultra-High Frequency Optical Millimeter-Wave Generation and 60-GHz Radio-over-Fiber Systems
指導教授:陳智弘陳智弘引用關係祁甡祁甡引用關係
指導教授(外文):Chen, JyehongChi, Sien
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:158
中文關鍵詞:毫米波60 GHz光載微波無線訊號倍頻正交分頻多工
外文關鍵詞:Millimeter wave60 GHzRadio over FiberFrequency MultiplicationOFDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的發展,毫米波訊號的產生與應用更為受到重視。毫米波訊號不只可應用於寬頻無線訊號傳輸,更可利用於雷達系統、汽車防撞系統、天文應用與毫米波顯像系統。然而,由於在空氣與銅導線之中的高傳輸損耗,毫米波訊號的產生與傳送依然存在許多挑戰。因此,利用低損耗的光纖網路並配合光倍頻技術,光毫米波訊號產生技術吸引各方的注目。
在這份論文當中,我們提出了使用四倍頻、八倍頻以及12倍頻的光毫米波產生技術,並使用理論以及實驗來分析及驗證系統。所提出之架構,可以產生超高頻、高純度之光毫米波訊號,提供給不同之毫米波應用使用。
基於所提出之光毫米波產生與光昇頻系統,我們可以將其利用於60-GHz光載微波無線訊號系統,並傳輸超過數個Gbps的訊號。在同時利用電與光昇頻技術,我們提出了Tandem-Single Sideband與六倍頻的60-GHz系統。在這些系統當中,我們達成了21-Gbps的訊號傳輸,並且在經過25公里光纖傳輸之後,並無明顯的訊號損耗。我們同時也提出,利用強度調變直接偵測(IMDD)的60 GHz RoF系統。系統架構非常簡單的IMDD系統,產生雙旁帶的訊號,因此將有光纖色散所造成之訊號衰退現象,在本論文中也有詳細之討論。利用IMDD的系統,我們達成60-GHz全雙工雙向21-Gbps訊號傳輸,並且達成500公尺光纖與10公尺無線傳輸。此IMDD系統,將可應用於短距離室內60-GHz RoF系統。
在本論文中,我們也同時提出整合有線基頻傳輸與光載微波無線訊號之整合型擷取網路系統。所提出之架構,可同時提供射頻M-array PSK訊號,與基頻OOK訊號。並且在遠端節點不需窄頻的光濾波器,將射頻與基頻訊號作分離,因此將可相容於現存的被動光纖網路(PON)架構之中。所提出之架構,在經過25公里光纖傳輸之後,基頻OOK與射頻PSK訊號,皆沒有明顯因光纖傳輸所造成之訊號衰減現象。

With the rapidly developing of technologies, optical millimeter-wave signal generation attracts a lot of interests for various kinds of applications. Not only in broadband wireless communication systems, but high frequency millimeter-wave signals can be utilized in radar, car anti-collision system, radio astronomy and imaging. However, millimeter-wave signal generation and transmission still remain great challenges due to the high propagation loss in air and in copper cables. Based on the extremely
low loss of the optical fiber, generation of optical millimeter-wave signal with frequency multiplication attracts a lot of attentions.
In this dissertation, optical millimeter-wave signal generation with frequency quadrupling, octupling and 12-tupling are proposed, theoretically analyzed and experimentally demonstrated. Optical millimeter-wave signals with ultra-high frequencies and high undesired optical sideband suppression ratios can be generated using
low-frequency optical modulator, components and equipments. Because the high undesired optical sideband suppression ratios, high purity millimeter-wave signals can be generated and suitable for various kind of millimeter-wave applications.
Based on the optical millimeter-wave signal generation and up-conversion systems, 60-GHz radio-over-fiber (RoF) system which provides wireless transmission with multi-Gbps data-rate can be achieved. A asymmetrical full-duplex bidirectional RoF system based on tandem-single-sideband (TSSB) modulation technique, and an optical up-conversion system with frequency sextupling for 60-GHz RoF links are proposed. Transmission of 25-km standard single mode fibers can be achieved without significant receiver power penalties.
A 2 × 21-Gbps symmetrical bidirectional full-duplex system at 60 GHz based on intensity modulation direct detection (IMDD) technique which is a very simple architecture is also proposed. Although chromatic dispersion induced performance fading issues are observed in the IMDD systems due to the double-sideband (DSB) modulation scheme, 500-m fiber transmission and 10-m wireless transmission with
acceptable receiver power penalties can be achieved without any dispersion compensation. Based on the very simple architectures and fully transparent characteristic of the bidirectional IMDD systems, the proposed systems are ideal for in-building high data-rate wireless applications, which are characterized by short fiber spans.
Multi-service hybrid access networks which supports both RoF and fiber to the x (FTTx) systems attract a lot of interests. Two multi-service hybrid access network systems which simultaneously generate and transmit radio frequency (RF) M-array phase shift keying (PSK) signal and baseband (BB) On-Off-keying (OOK) signal are proposed and experimentally demonstrated. The wired BB signal is compatible with the existing passive optical network (PON) system, and the wireless RF PSK signal can also share the same distributed infrastructure. No dispersion induced fading issues are expected and no narrow band optical filter is needed at the remote nodes in the proposed systems. After transmission over 25-km standard single mode fiber, no significant receiver power penalties are observed in both RF and BB channels in the proposed systems.
Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction to Millimeter-Wave Signals . . . . . . . . . . . . . . . . 1
1.2 Generation and Transmission of Millimeter-Wave Signals . . . . . . . 2
1.3 Radio-over-Fiber Technologies . . . . . . . . . . . . . . . . . . . . . 4
1.4 60-GHz Wireless Communication Systems . . . . . . . . . . . . . . 5
1.5 Objective and Outlines of the Thesis . . . . . . . . . . . . . . . . . . 7
Chapter 2 OPTICAL MILLIMETER-WAVE GENERATION USING
EXTERNAL MODULATOR AND SQUARE-LAWDETECTION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Double-Sideband Modulation Systems . . . . . . . . . . . . . . . . . 12
2.2 Single-Sideband Modulation Systems . . . . . . . . . . . . . . . . . 13
2.3 Double-Sideband with Carrier Suppression Systems . . . . . . . . . . 14
2.4 Square-Law Detection using Photo Diode . . . . . . . . . . . . . . . 15
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 3 OPTICAL MILLIMETER-WAVE GENERATION SYSTEM WITH FREQUENCY QUARDRUPLING . . . . . . . . . 17
3.1 Concept and Theoretical Model . . . . . . . . . . . . . . . . . . . . . 18
3.2 Impact of The PD-MZM Imbalance . . . . . . . . . . . . . . . . . . 22
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 WDM Up-Conversion Employing Frequency Quadrupling . . . . . . 31
3.4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 34
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Chapter 4 OPTICAL MILLIMETER-WAVE GENERATION SYSTEM
WITH HIGHER ORDER MULTIPLICATION . . . . . . 41
4.1 Optical Millimeter-Wave Generation with Frequency Octupling . . . . 42
4.1.1 Concept and Theoretical Model . . . . . . . . . . . . . . . . 42
4.1.2 Experimental Setup and Results . . . . . . . . . . . . . . . . 46
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 W-Band Wireless Communication . . . . . . . . . . . . . . . . . . . 52
4.2.1 Device Structure And Measurement Setup . . . . . . . . . . . 53
4.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Optical Millimeter-Wave Generation with Frequency 12-tupling . . . 60
4.3.1 Concept and Theoretical Model . . . . . . . . . . . . . . . . 60
4.3.2 Experimental setup and results . . . . . . . . . . . . . . . . . 64
4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Chapter 5 60-GHZ RADIO-OVER-FIBER COMMUNICATION SYSTEM
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 Orthogonal-Frequency-Division-Multiplexing Modulation Format . . 74
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.2 OFDM signal generation . . . . . . . . . . . . . . . . . . . . 75
5.2 Tandem-Single-Sideband Modulation System . . . . . . . . . . . . . 77
5.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 Experimental Results and Discussion . . . . . . . . . . . . . 80
5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Modulation System with Frequency Sextupling . . . . . . . . . . . . 84
5.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3 Experimental Results and Discussion . . . . . . . . . . . . . 88
5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Intensity Modulation Direction Detection Systems Using a Mach-
Zehnder Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Intensity Modulation Direction Detection System Using an Electroabsorption
Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 100
5.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Full-Duplex Bidirectional Transmission . . . . . . . . . . . . . . . . 103
5.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 104
5.6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 105
5.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Chapter 6 MULTI-SERVICE HYBRID ACCESS NETWORK . . . . 111
6.1 Multi-Services Hybrid Access Network System Using A Dual-Electrode
MZM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . 115
6.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Multi-Services Hybrid Access Network System Using A DP-MZM . . 119
6.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . 121
6.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Chapter 7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . 125
Appendix A IMBALANCE OF CONVENTIONAL MZM . . . . . . . . 129
Appendix B CHROMATIC DISPERSION INDUCED RF FADING IN
DSB MODULATION SCHEME . . . . . . . . . . . . . . . 133
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
PUBLICATION LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
[1] J. Wells, “Faster than fiber: The future of multi-g/s wireless”, IEEE Microw. Magazine, vol. 10, no. 3, pp. 104–122, 2009.
[2] H. Y. Chang and H. Wang, “A 98/196 ghz low phase noise voltage controlled oscillator with a mode selector using a 90 nm cmos process”, IEEE Microw. Wirele. Compo. Lett., vol. 19, no. 3, pp. 170–172, 2009.
[3] C. Cao, E. Seok, and K.K. O, “192 ghz push-push vco in 0.13 μm cmos”, IEEE Electro. Lett., vol. 42, no. 4, pp. 208–210, 2006.
[4] B. Heydari, M. Bohsali, E. Adabi, and A. M. Niknejad, “Low-power mm-wave components up to 104ghz in 90nm cmos”, in International Solid-State Circuits Conference, 2007, pp. 200–201.
[5] H. K. Chen, H. J. Chen, D. C. Chang, Y. Z. Juang, and S. S. Lu, “A 0.6 v, 4.32 mw, 68 ghz low phase-noise vco with untrinsic-tuned technique in 0.13 μm
cmos”, IEEE Microw. Wirele. Compo. Lett., vol. 18, no. 7, pp. 467–469, 2008.
[6] J. Yao, “Microwave photonics”, IEEE J. Lightw. Technol., vol. 27, no. 3, pp.
314–335, 2009.
[7] K. T. Lau, “Narrow-band modulation of semiconductor lasers at millimeter wave
frequencies (¿100 ghz) by mode locking”, IEEE J. Quantum Electro., vol. 26,
no. 2, pp. 250–261, 1990.
[8] K. H. Lee, W. Y. Choi, Y. A. Leem, and K. H. Park, “Harmonic millimeterwave
generation and frequency up-conversion using a passively mode-locked multisection dfb laser under external optical injection”, IEEE Photon. Technol.
Lett., vol. 19, no. 3, pp. 161–163, 2007.
[9] W. W. Hsiang, C. Y. Lin, N. K. Sooi, and Y. Lai, “Long-term stabilization of
a 10 ghz 0.8 ps asynchronously mode-locked er-fiber soliton laser by deviationfrequency
locking”, Opt. Express, vol. 14, no. 5, pp. 1822–1828, 2006.
[10] C. Williams, F. Quinlan, and P. J. Delfyett, “Injection-locked mode-locked laser
with long-term stabilization and high power-per-combline”, IEEE Photon. Technol.
Lett., vol. 21, no. 2, pp. 94–96, 2009.
[11] J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation
or up-conversion using external modulator”, IEEE Photon. Technol. Lett.,
vol. 18, no. 1, pp. 265–267, 2006.
[12] H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over
fiber link”, IEEE J. Lightw. Technol., vol. 26, pp. 2706–2711, 2008.
[13] M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Frequency sixupler for
millimeter-wave over fiber systems”, Opt. Express, vol. 16, no. 14, pp. 10141–
10151, 2008.
[14] J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave
generation or up-conversion using external modulators”, IEEE Photon. Technol.
Lett., vol. 18, no. 1, pp. 265–267, 2006.
[15] Z. Jia, J. Yu, A. Chowdhury, G. Ellinas, and G. K. Chang, “Simultaneous generation
of independent wired and wireless services using a single modulator in
millimeter-wave-band radio-over-fiber systems”, IEEE Photon. Technol. Lett.,
vol. 19, no. 20, pp. 1691–1693, 2007.
[16] Q. Chang and Y. Su, “A radio over fiber system for simultaneous generation and
transmission of multiband signals”, in European Conf. on Optical Communication
(ECOC 2007), 2007, p. P091.
[17] Y. Tian and Y. Su, “A wdm-pon system providing quadruple play service with
converged optical and wireless access”, in European Conf. on Optical Communication
(ECOC 2007), 2007, p. P.6.07.
[18] http://www.wirelesshd.org, ”.
[19] http://www.ieee802.org/15/pub/TG3c.html, ”.
[20] Behzad Razavi, “Gadgets gab at 60 ghz”, IEEE Spectrum, pp. 46–58, 2008.
[21] M. Weiß, M. Huchard, A. St¨ohr, B. Charbonnier, S. Fedderwitz, and D. S.
Jager, “60-ghz photonic millimeter-wave link for short- to medium-range wireless
transmission up to 12.5gb/s”, IEEE J. Lightw. Technol., vol. 26, pp. 2424–
2429, 2008.
[22] Y. X. Guo, B. Luo, C.S. Park, L. C. Ong, M.-T. Zhou, and S. Kato, “60 ghz
radio-over-fiber for gbps transmission”, in Global Symposium on Millimeter
Waves (GSMM), 2008, p. Invited.
[23] J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable
2.5-gb/s baseband and 60-ghz (155-mb/s) millimeter-waveband radioover-
fiber (interleaving) access network”, IEEE J. Lightw. Technol., vol. 26, pp.
2506–2512, 2008.
[24] T. Taniguchi, N. Sakurai, K. Kumozaki, and T. Imai, “Full-duplex 1.0 gbit/s data
transmission over 60 ghz radio-on-fiber access system based on the loop-back
optical heterodyne technique”, IEEE J. Lightw. Technol., vol. 26, pp. 1765–
1776, 2008.
[25] J. H. Seo, C. S. Choi, Y. S. Kang, Y. D. Chung, J. Kim, andW. Y. Choi, “Soa-eam
frequency up/down-converters for 60-ghz bi-directional radio-on-fiber systems”,
IEEE Trans. on Microw. Theory and Tech., vol. 54, pp. 959–966, 2006.
[26] T. Kuri, K. Kitayama, and Y. Takahashi, “A single light-source configuration for
full-duplex 60-ghz-band radio-on-fiber system”, IEEE Trans. on Microw. Theory
and Tech., vol. 51, pp. 431–439, 2003.
[27] H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 ghz
millimeter-wave gigabit wireless services over long-reach passive optical network
using remote signal regeneration and upconversion”, Opt. Express, vol.
17, pp. 3036–3041, 2009.
[28] M. Huchard, M. Weiß, A. Pizzinat, S. Meyer, P. Guignard, and B. Charbonnier,
“Ultra-broadband wireless home network based on 60-ghz wpan cells interconnected
via rof”, IEEE J. Lightw. Technol., vol. 26, no. 15, pp. 2364–2372, 2008.
[29] G. H. Nguyen, B. Cabon, and Y. Le Guennec, “Generation of 60-ghz mb-ofdm
signal-over-fiber by up-conversion using cascaded external modulators”, IEEE
J. Lightw. Technol., vol. 27, pp. 1496–1502, 2009.
[30] W. K. Kim, S. W. Kwon, W. J. Jeong, G. S. Son, K. H. Lee, W. Y. Choi, W. S.
Yang, H. M. Lee, and H. Y. Lee, “Integrated optical modulator for signal upconversion
over radio-on-fiber link”, Opt. Express, vol. 17, pp. 2638–2645,
2009.
[31] Y. T. Hsueh, Z. S. Jia, H. C. Chien, J. J. Yu, and G. K. Chang, “A novel bidirectional
60-ghz radio-over-fiber scheme with multiband signal generation using
a single intensity modulator”, IEEE Photon. Technol. Lett., vol. 21, pp. 1338–
1340, 2009.
[32] C. S. Park, Y. Guo, Y. K. Yeo, Y. Wang, L. C. Ong, and S. Kato, “Fiber-optic
60-ghz wireless downlink using cross-absorption modulation in an eam”, IEEE
Photon. Technol. Lett., vol. 20, pp. 557–559, 2008.
[33] A. Ng’oma, M. Sauer, D. Thelen, and J. George, “Data throughput tripling by
feed-forward equalization and photonic qpsk in a 7 gbps single-carrier rof link at
60 ghz”, in International Topical Meeting on Microwave Photonics Asia-Pacific
Microwave Photonics Conference (2008), 2008, pp. 213–216.
[34] Y. Le Guennec, G. Maury, J. P. Yao, and B. Cabon, “New optical microwave
up-conversion solution in radio-over-fiber networks for 60-ghz wireless applications”,
IEEE J. Lightw. Technol., vol. 24, pp. 1277–1282, 2006.
[35] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta,
H. Sugahara H. Ito, Y. Sato, and T. Nagatsuma, “120-gh-band millimeter-wave
photonic wireless link for 10-gb/s data transmission”, IEEE Trans. Microw. Theory
Tech., vol. 54, no. 5, pp. 1937–1944, 2005.
[36] J. F. Cliche, B. Shillue, M. Tetu, and M. Poulin, “A 100-ghz-tunable photonic
millimeter wave synthesizer for the atacama large millimeter array radiotelescope”,
in International Microw. Theory and Tech. Society, Honolulu, Hawaii,
2007, pp. 349–352.
[37] A. Sasaki and T. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with
a high-sensitivity waveguide-mounted electro-optic sensor”, Jpn. J. Appl. Phys.,
vol. 41, no. 1A/B, pp. L83–L86, 2002.
[38] J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation
or up-conversion using external modulators”, IEEE Photon. Technol. Lett.,
vol. 18, no. 1, pp. 265–267, 2006.
[39] T. Ohno, F. Nakajima, T. Furuta, and H. Ito, “A 240-ghz active mode-locked
laser diode for ultra-broadband fiber-radio transmission systems”, in Optical
Fiber Communication Conf. (OFC 2005), 2005, p. PDP13.
[40] T. Ohno, F. Nakajima, T. Furuta, and H. Ito, “A 240-ghz active mode-locked
laser diode for ultra-broadband fiber-radio transmission systems”, in Optical
Fiber Communication Conf. (OFC 2005), 2005, p. PDP13.
[41] F. V. Dijk, A. Enard, X. Buet, F. Lelarge, and G. H. Duan, “Quantum dash
mode-locked laser for millimeter-wave coupled opto-electronic oscillator”, in
Int. Topic Meeting on Microwave Photonics (MWP 2007), 2007, pp. 66–69.
[42] J. Kondo, K. Aoki, Y. Iwata, A. Hamajima, T. Ejiri, O. Mitomi, and M. Minakata,
“76-ghz millimeter-wave generation using mz linbo3 modulator with drive voltage
of 7 vp-p and 19 ghz signal input”, in Int. Topic Meeting on Microwave
Photonics (MWP 2005), 2005, pp. 1–4.
[43] J. Yu, Z. Jia, L. Yi, T. Wang, and G. K. Chang, “Centralized lightwave
radio-over-fiber system with photonic frequency quadrupling for high-frequency
millimeter-wave generation”, IEEE Photon. Technol. Lett., vol. 19, no. 19, pp.
1499–1501, 2007.
[44] Z. Pan, S. Chandel, and C. Yu, “160 ghz optical pulse generation using a 40 ghz
phase modulator and two stages of delayed mz interferometers”, in Conf. Lasers
Electro-Optics (CLEO 2006), 2006, p. CFP2.
[45] A. Wiberg, P. Perez-Millan, M. V. Andres, and P. O. Hedekvist, “Microwavephotonic
frequency multiplication utilizing optical four-wave mixing and fiber
bragg gratings”, IEEE J. Lightw. Technol., vol. 24, no. 1, pp. 329–334, 2006.
[46] C. Yu, Z. Pan, T. Luo, Y. Wang, L. Christen, and A. E. Willner, “Beyond 40-
ghz return-to-zero optical pulse-train generation using a phase modulator and
polarization-maintaining fiber”, IEEE Photon. Technol. Lett., vol. 19, no. 1, pp.
42–44, 2007.
[47] T.Wang, M. Chen, H. Chen, J. Zhang, and S. Xie, “Millimeter-wave signal generation
using two cascaded optical modulators and fwm effect in semiconductor
optical amplifier”, IEEE Photon. Technol. Lett., vol. 19, no. 16, pp. 1191–1193,
2007.
[48] M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Analysis of frequency quadrupling
using a single mach-zehnder modulator for millimeter-wave generation
and distribution over fiber systems”, Opt. Express, vol. 16, no. 14, pp. 10786–
10802, 2008.
[49] X. Wei, J. Leuthold, and L. Zhang, “Delay-interferometer-based optical pulse
generator”, in Optical Fiber Communication Conf. 2004 (OFC 2004), 2004, p.
WL6.
[50] G. Qi, J. Yao, Joe S., S. Paquet, and C. Belisle, “Optical generation and distribution
of continuously tunable millimeter-wave signals using an optical phase
modulator”, IEEE J. Lightwave Technol., vol. 23, pp. 2687–2695, 2005.
[51] G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Generation and distribution
of a wide-band continuously tunable millimeter-wave signal with an optical
external modulation technique”, IEEE Trans. on Microwave Theory and Tech.,
vol. 53, no. 10, pp. 3090–3097, 2005.
[52] A.Wiberg, P. Perez-Millan, M. V. Andres, and Per Olof Hedekvist, “Microwavephotonic
frequency multiplication utilizing optical four-wave mixing and fiber
bragg gratings”, IEEE J. Lightwave Technol., vol. 24, no. 1, pp. 329–334, 2006.
[53] Q. Wang, H. Rideout, F. Zeng, and J. Yao, “Millimeter-wave frequency tripling
based on four-wave mixing in a semiconductor optical amplifier”, IEEE Photon.
Technol. Lett., vol. 18, no. 23, pp. 2460–2462, 2006.
[54] Z. Pan, S. Chandel, and C. Yu, “160 ghz optical pulse generation using a 40 ghz
phase modulator and two stages of delayed mz interferometers”, in Conf. Lasers
and Electro-Optics (CLEO 2006), 2006, p. CFP2.
[55] C. Yu, Z. Pan, T. Luo, T. Wang, L. Christen, and A. E. Willner, “Beyond 40-
ghz return-to-zero optical pulse-train generation using a phase modulator and
polarization-maintaining fiber”, IEEE Photon. Technol. Lett., vol. 19, no. 1, pp.
42–44, 2007.
[56] Z. Xu, X. Zhang, and J. Yu, “Frequency upconversion of multiple rf signals
using optical carrier suppression for radio over fiber downlinks”, Opt. Express,
vol. 15, no. 25, pp. 16737–16747, 2007.
[57] A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma,
N. Kukutsu, and Y. Kado, “Transmission characteristics of 120-ghz-band wireless
link using radio-on-fiber technologies”, IEEE J. Lightw. Technol., vol. 26,
pp. 2338–2344, 2008.
[58] H. C. Chien, A. Chowdhury, Z. Jai, Y. T. Hsueh, and G. K. Chang, “Long-reach
60-ghz mm-wave optical-wireless access network using remote signal regeneration
and upconversion”, in European Conf. on Optical Communication (ECOC
2008), 2008, pp. 137–138.
[59] J. Y. Kim, C. S. Choi, W. Y. Choi, H. Kamitsuna, M. Ida, and K. Kurishima,
“Characteristics of inp-ingaas hpt-based optically injection-locked selfoscillating
optoelectronic mixers and their influence on radio-over-fiber system
performance”, IEEE Photon. Technol. Lett., vol. 19, pp. 155–157, 2007.
[60] M. Tsuchiya and T. Hosida, “Nonlinear photodetection scheme and its system
applications to fiber-optic millimeter-wave wireless down-links”, IEEE Trans.
Microwave Theory Tech., vol. 47, 1999.
[61] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-gb/s millimeter-wave signal
generation using photodiode bias modulation”, IEEE J. Lightw. Technol., vol.
24, pp. 1725–1731, 2006.
[62] H. Fushimi, T. Furuta, T. Ishibashi, and H. Ito, “Photoresponse nonlinearity of a
uni-traveling-carrier photodiode and its application to optoelectronic millimeterwave
mixing in 60ghz band”, Jpn. J. Appl. Phys, vol. 43, pp. L966–L968, 2004.
[63] J. W. Shi, Y. S. Wu, and Y. S. Lin, “Near-ballistic uni-traveling-carrier photodiode
based v-band optoelectronic mixers with internal up-conversion-gain, wide
modulation bandwidth, and very high operation current performance”, IEEE
Photon. Technol. Lett., vol. 20, pp. 939–941, 2008.
[64] F. M. Kuo, Y. S. Wu, and J. W. Shi, “Near-ballistic unitraveling-carrier
photodiode-based v-band optoelectronic mixers with low upconversion loss and
high operation current performance under optical if signal injection”, IEEE Electron
Device Lett.,, vol. 30, pp. 21–23, 2009.
[65] J. W. Shi, C. Y. Wu, Y. S. Wu, P. H. Chiu, and C. C. Hong, “High-speed, highresponsivity,
and high-power performance of near-ballistic uni-traveling-carrier
photodiode at 1.55μm wavelength”, IEEE Photon. Technol. Lett., vol. 17, pp.
1929–1931, 2005.
[66] Y. S. Wu and J. W. Shi, “Dynamic analysis of high-power and high-speed nearballistic
unitraveling carrier photodiodes at w-band”, IEEE Photon. Technol.
Lett., vol. 20, pp. 1160–1162, 2008.
[67] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi,
“High-speed and high-output inp-ingaas unitraveling-carrier photodiodes”,
IEEE J. of Sel. Topics in Quantum Electronics,, vol. 10, pp. 709–727, 2004.
[68] R. Nagarajan, C. H. Joyner, R. P. Schneider, J. S. Bostak Jr., T. Butrie, A. G.
Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert,
S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy,
A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore,
R. K. Schlenker, R. B. Taylor, H. S. Tsai, M. F. Van Leeuwen, J. Webjorn,
M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A.
Kish, and D. F. Welch, “Large-scle photonic integrated circuits”, IEEE J. Sel.
Top. Quan. Electron., vol. 11, no. 1, pp. 50–65, 2005.
[69] J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “Dwdm optical
millimeter-wave generation for radio-over-fiber using an optical phase modulator
and an optical interleaver”, IEEE Photon. Technol. Lett., vol. 18, no. 13,
pp. 1418–1420, 2006.
[70] C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis
of optical carrier-to-sideband ratio for improving transmission performance in
fiber-radio links”, IEEE Trans. on Microw. Theory and Tech., vol. 54, no. 5, pp.
2181–2187, 2006.
[71] C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel
direct detection microwave photonic vector modulation scheme for radio-overfiber
system”, IEEE Photon. Technol. Lett., vol. 20, pp. 1106–1108, 2008.
[72] C. T. Lin, E. Z. Wong, W. J. Jiang, P. T. Shih, J. Chen, and S. Chi, “28-gb/s
16-qam ofdm radio-over-fiber system within 7-ghz license-free band at 60 ghz employing all-optical up-conversion”, in The Conference on Lasers and Electro-
Optics (CLEO 2009), 2009, pp. PDP, CPDA8.
[73] G. H. Nguyen, B. Cabon, and Y. L. Guennec, “Generation of 60-ghz mb-ofdm
signal-over-fiber by up-conversion using cascaded external modulators”, IEEE
J. Lightw. Technol., vol. 27, no. 11, pp. 1496–1502, 2009.
[74] V. Shukla, “Fiber to the home: a carrier perspective”, in European Conf. on
Optical Communication (ECOC 2008), 2008, p. Tu.1.F.1.
[75] J. B. Jensen, X. Yu, I. T. Monroy, C. Peucheret, and P. Jeppesen, “Combined
transmission of baseband nrz-dqpsk and phase modulated radio-over-fibre”, in
European Conf. on Optical Communication (ECOC 2008), 2007, p. Tu.4.F.3.
[76] F. Xiong, “Digital modulation techniques ed. 2nd”, Artech House, INC., 2006.
[77] V. J. Urick, J. X. Qie, and F. Bucholtz, “Wide-band qam-over-fiber using phase
modulation and interferometric demodulation”, IEEE Photon. Technol. Lett.,
vol. 16, no. 10, pp. 2374–2376, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔