(3.220.231.235) 您好!臺灣時間:2021/03/08 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭介任
研究生(外文):Cheng, Chieh-Jen
論文名稱:廣義裂片的繞射理論分析兼論向量光束
論文名稱(外文):Diffraction Theoretic Study on Vectorial Beams and Split Lenses
指導教授:陳志隆陳志隆引用關係
指導教授(外文):Chern, Jyh-Long
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:133
中文關鍵詞:裂解鏡片繞射理論分析向量光束
外文關鍵詞:Split lensesDiffractionVectorial beams
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
對切透鏡有比勒(Billet)横向及梅斯林(Meslin)縱向切割兩種型式。比勒對切透鏡在遠場會產生雙曲面及等間距直線這兩種干涉條紋,而梅斯林對切透鏡在兩透鏡焦點中間附近會產生半圓型的干涉條紋。本論文延伸對切透鏡成裂解透鏡,並討論比勒裂解透鏡之焦點形成一個圓形時的遠場干涉條紋分佈情形及其相對於光軸的對稱性;在梅斯林裂解透鏡中,我們將一個圓透鏡切割成2N塊等角度透鏡,編號為單數與雙數分別放置於不同焦點處,並討論其光場分佈之對稱性。相對於通過兩焦點之中心點的垂直面;N為單數時,振幅及相位分別為鏡面反射對稱及反對稱(扣除π相位角),N為偶數時,在鏡面反射對稱與反對稱外要再加上額外的2π/N的旋轉角。此外,從光場的漸近表示式可以得知比勒裂解透鏡可以用來產生貝索光束(Bessel beam),並可再經由另一透鏡消除發散相位成一無繞射貝索光束(non-diffracting Bessel beam)。相對於傳統的環形孔徑,使用此透鏡所產生的貝索光束可以攜帶更多能量。有趣的是在漸近表示式中,貝索函數之參數與數值孔徑無關,但是數值孔徑卻決定了漸近表示式的適用範圍。因此,數值孔徑會決定貝索光束的發散情形與其所適用的漸近表示式範圍。
另一方面,在完美透鏡(perfect lens)成像系統中,焦點位移(Focal shift)效應發生於菲涅耳數(Fresnel number)小於10的情形之下,若使用線偏振光(linearly polarized)的入射光學系統中,則焦點位移效應與菲涅耳數及數值孔徑皆成反比。本論文討論在徑向偏振光(radially polarized)及方位偏振光(azimuthally polarized)入射情形下,焦點位移效應與菲涅耳數及數值孔徑並不會只有單純反比關係。此外,三種不同偏振光在同一個系統參數下(亦即相同菲涅耳數和數值孔徑),方位偏振光所造成的焦點位移效應最嚴重,徑向偏振光次之,線偏振光最輕微。

This study examines the diffraction properties of the generalized split N-sector lens originating from the configuration of Meslin’s experiment and the Billet’s split bi-sector lens. In Billet’s N-split lens, the type of lens splitting selected causes the interference pattern of equidistant straight lines in the original Billet’s lens to form an N-fold angularly distributed pattern with an angle difference of 2π/N. For an odd number of splitting N, there is an additional angle shift of π/N for the azimuthally distributed patterns of equidistant straight lines. In other words, there are two kinds of symmetry even for simple splitting operations. On the other hand, the peak intensity distribution in the central portion resembles a concentric-circle-like pattern, when N is large as a result of N-beam interference. As to the Meslin’s N-split lens, the amplitude and the phase follow and respectively when the splitting is with double of an even number. On the other hand, for the case of double of an odd number, the relation changes to hold with and , where the optical units u and v are used to denote the z- and the radial coordinates respectively and the azimuthal angle is ψ. Additional symmetry properties are also explored and identified, particularly for the distributions on the focal plane.
Moreover, the Bessel beam is studied and by the use of the Billet’s N-split lens distributing the focal points circularly on the focal plane. This study explores the characteristics of beam propagation and analytically derives the asymptotic characteristics of beam propagation based on the stationary phase approximation and the moment-free Filon-type method. Results show that the unique Billet’s N-split lens can generate a quasi-Bessel beam if the number of splitting N is large enough, e.g., N≧24. This study also explores the diffraction efficiency of corresponding quasi-Bessel beam and the influence of aperture size. The potential advantage of proposed split-lens approach is that, unlike the classical means of annual aperture, this simple lens approach allows a much large throughput in creating the Bessel beam and hence the Bessel beam could have more optical energy.
The diffraction behaviors of cylindrical vector beam, particularly the focal shifts further caused by different polarizations, namely linear, radial and azimuthal, are also investigated. The variation of focal shifts associated with numerical aperture and the Fresnel number is also explored. It is found that with a low numerical aperture, e.g., 0.1, the focal shifts associated by the radially and azimuthally polarized illuminations are nearly the same, while they are about 1.65 times as large as that of linearly polarized illumination. As the system is of high numerical aperture, e.g., 0.9, the focal shifts associated by the radially and azimuthally polarized illuminations have ~10% difference and their ratios with that of linearly polarized illumination become double in comparing with the case of low numerical aperture. In general, azimuthally polarized illumination has the largest power in shifting the focal point.

摘 要 i
Abstract ii
Contents v
List of Figures vii
List of Tables xii
1 Introduction 1
1.1 Incident beams – scalar field 3
1.2 Optics 7
1.2.1 Perfect lens 8
1.2.2 A lens with aberration 10
1.2.3 Split lens 19
1.3 Revisit on incident beams – vector fields in an optical system 19
1.4 Organization of this dissertation 29
2 Transversal foci: Billet’s N-split lens 30
2.1 Introduction 30
2.2 Symmetry properties 33
2.3 Billet’s N-split lens 37
2.3.1 Interference pattern of straight lines 39
2.3.2 Concentric-circle like interference pattern 40
2.4 Summary 43
3 Longitudinal foci: Meslin’s N-split lens 45
3.1 Introduction 45
3.2 Theoretical formalism 46
3.2.1 N is double of even number 50
3.2.2 N is double of odd number 53
3.3 Numerical explorations 57
3.4 Summary 71
4 Quasi J0 Bessel beam by Billet’s N-split lens 73
4.1 Introduction 73
4.2 Theoretical Formalism 75
4.3 Numerical Identification 78
4.4 Asymptotic Behavior 81
4.5 Influence of aperture radius 83
4.6 Summary 87
5 Focal shifts on vector beams 90
5.1 Introduction 90
5.2 Theoretical Background and Beam Formalism 93
5.2.1 A brief on the vector Kirchhoff diffraction theory 93
5.2.2 Bending of the E-vector transmitted through aperture 96
5.2.3 Diffracted electric fields in image space 98
5.2.4 Formalism of radially polarized illumination 99
5.2.5 Formalism of azimuthally polarized illumination 102
5.2.6 Incident beam setting and the fractional focal shift 103
5.3 Influence of incident polarization on focal shift 108
5.3.1 The case of radially polarized illumination (RPI) 109
5.3.2 The case of azimuthally polarized illumination (API) 111
5.3.3 The case of linearly polarized illumination (LPI) 112
5.3.4 Comparison with the ratio of fractional focal shifts 113
5.4 Summary 115
6 Conclusions and future works 119
6.1 Conclusions 119
6.2 Future works 121
Reference 124
1. J. W. Goodman, Introduction to Fourier Optics, 3rd Ed. (Roberts & Company Publishers, 2005).
2. H. Osterberg and L. W. Smith, Closed solutions of Rayleigh’s integral for axial points,” J. Opt. Soc. Am. 51, 1050-1054 (1961).
3. M. Born and E. Wolf, Principles of Optics, 7th expended ed. (Cambridge University Press, 1999).
4. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253, 358-379 (1959).
5. See http://www.olympusmicro.com/primer/lightandcolor/opticalaberrations.html.
6. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77-87 (2000).
7. M. Mansuripur, Classical Optics and its applications, 2nd Ed. (Cambridge University Press, 2009).
8. D. Malacara, Optical Shop Testing, 3rd Ed. (Wiley Interscience, 2007).
9. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).
10. E. Wolf, Selected works of E. Wolf, with commentary (World Scientific, 2001).
11. S.-C. Chu and J.-L. Chern, “Characterization of the subwavelength variation signature from far-field irradiance,” Opt. Lett. 29, 1045-1047 (2004); “Retrieving two-dimensional information of the subwavelength variation from far-field irradiance”, J. Opt. Soc. Am. A 23, 2471-2475 (2006); “Characterization of one-dimension edge roughness from far-field irradiance at subwavelength-scale precision”, Opt. Commun., 281, 1997–2001 (2008).
12. A. Senthil Kumar and R. M. Vasu, “Multiple imaging and multichannel optical processing with split lenses,” Appl. Opt., 26, 5345-5349 (1987).
13. D. Dayton, S. Sandven, J. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave front sensor and zonal control algorithm,” Optics Express, 1, 338-346 (1997)
14. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,”, Optics Express, 17, 11013-11025 (2009)
15. E. Collett and E. Wolf, “Symmetry properties of focused fields,” Opt. Lett. 5, 264-266 (1980).
16. C. J. Cheng and J.-L. Chern, “Symmetry Property of a generalized Billet’s N-split lens,” Opt. Commun. 283, 3564-3568 (2010).
17. J. Durnin, J.J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58 15, 1499-1501 (1987). A review article could be found from D. McGloin, and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemporary Physics, 46, 15-28 (2005).
18. W. D. Montgomery, “Self-Imaging Objects of Infinite Aperture,” J. Opt. Soc. Am. 57, 772-775 (1967).
19. V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, “Algorithm for the Generation of Non-diffracting Bessel Modes,” J. Mod. Opt. 42, 1231-1239 (1995).
20. J. C. Gutierrez-Vega and M. A. Bandres, “Helmholtz-Gauss waves,” J. Opt. Soc. Am. A 22, 289-298 (2005).
21. M. Anguiano-Morales, A. Martinez, M. DavidIturbe-Castillo, and S. Chavez-Cerda, “Different field distributions obtained with an axicon and an amplitude mask,” Opt. Commun. 281, 401-407 (2008).
22. Z . Bouchal and J. Courtial, “The connection of singular and nondiffracting optics,” J. Opt. A: Pure Appl. Opt. 6, S184-8 (2004).
23. L.-G. Wang, L.-Q. Wang, and S.-Y. Zhu, “Formation of optical vortices using coherent laser beam arrays,” Opt. Commun. 282, 1088-1094 (2009).
24. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708-2713 (1992).
25. C.A. Dartora, M. Zamboni-Racheda, K.Z. Nobrega, E. Recami, and H.E. Hernandez-Figueroa, “General formulation for the analysis of scalar diffraction-free beams using angular modulation: Mathieu and Bessel beams,” Opt. Commun. 222, 75-80 (2003).
26. Methods for Computer Design of Diffractive Optical Elements, V. A. Soifer, ed., (Wiley, New York, 2002), p. 765.
27. W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362-2364 (1998).
28. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974-1977 (1998).
29. J. E. Curtis, B. A. Koss, and D. G. Grier “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002).
30. S. Xiang, “Efficient Filon-type methods for ,” Numer. Math. 105, 633-658 (2007); A. Iserles and S. P. Norsett, “Efficient quadrature of highly oscillatory integrals using derivatives,” Proc. R. Soc. A, 461, 1383-1390 (2005).
31. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482–4485 (2000).
32. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5253 (2001).
33. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
34. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713-4716 (1997).
35. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807-1809 (1994).
36. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377-3382 (2004).
37. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32, 1839–1841 (2007).
38. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32, 2535–2537 (2007).
39. W. Chen and Q. Zhan, “Realization of evanescent Bessel beam via surface plasmon interference excited by radially polarized beam,” Opt. Lett. 34, 722–724 (2009).
40. P. L. Greene and D. G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411-419 (1999).
41. P. L. Greene and D. G. Hall, “Diffraction characteristics of the azimuthal Bessel-Gauss beam,” J. Opt. Soc. Am. A 13, 962-966 (1996).
42. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J. Opt. Soc. Am. A 15, 3020-3027 (1998).
43. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9, 490-497 (2001).
44. A.S. van de Nes, P.R.T. Munro, S.F. Pereira, J. J. M. Braat, and P. Torok, “Cylindrical vector beam focusing through a dielectric interface: comment,” Opt. Express 12, 967-969 (2004).
45. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface: reply comment,” Opt. Express 12, 970-971 (2004).
46. D. P. Biss and T. G. Brown “Primary aberrations in focused radially polarized vortex beams,” Opt. Express 3, 384-393 (2004).
47. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427-429 (1994).
48. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9-11 (1996).
49. E. Y. S. Yew and C. J. R. Sheppard, “Tight focusing of radially polarized Gaussian and Bessel–Gauss beams,” Opt. Lett. 32, 3417-3419 (2007).
50. K. Yoshiki, M. Hashimoto, and T. Araki, “Second-harmonic-generation microscope using eight-segment polarization-mode converter to observe three-dimensional molecular orientation,” Opt. Lett. 32, 1680-1682 (2007).
51. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996).
52. D. Pohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266-287 (1972).
53. Y. Li, “Focal shifts in diffracted converging electromagnetic waves. I. Kirchhoff theory,” J. Opt. Soc. Am. A 22, 68-76 (2005).
54. T. D. Visser and S. H. Wiersma, “Diffraction of converging electromagnetic waves,” J. Opt. Soc. Am. A 9, 2034-2047 (1992).
55. W. Hsu and R. Barakat, “Stratton-Chu vectorial diffraction of electromagnetic fields by aperture with application to small-Fresnel-number systems,” J. Opt. Soc. Am. A 11, 623-629 (1994).
56. Y. Li, “Focal shifts in diffracted converging electromagnetic waves. II. Rayleigh theory,” J. Opt. Soc. Am. A 22, 77-83 (2005).
57. Y. Li and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers,” J. Opt. Soc. Am. A 1, 801-808 (1984).
58. Y. Li, “Dependence of the focal shift on Fresnel number and f number,” J. Opt. Soc. Am. 72, 720-775 (1982).
59. Y. Li and E. Wolf, “Focal shift in diffracted converging spherical waves,” Opt. Commun. 39, 211-215 (1982).
60. Y. Li, “Focal shift in small-Fresnel-number focusing system of different relative aperture,” J. Opt. Soc. Am. A 20, 234-239 (2003).
61. C. J. R Sheppard and P. Torok, “Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number,” J. Opt. Soc. Am. A 20, 2156-2162 (2003).
62. W. H. Carter, “Focal shift and concept of effective Fresnel number for a Gaussian beam,” Appl. Opt. 21 1989-1994 (1982).
63. Y. Li, “Oscillations and discontinuity in the focal shift of Gaussian laser beams,” J. Opt. Soc. Am. A 3, 1761-1765 (1986).
64. Y. Li and F. T. S. Yu, “Intensity distribution near the focus of an apertured focused Gaussian beam,” Opt. Commun. 70, 1-7 (1989).
65. Y. Li, “Focal shift formula for focused, apertured Gaussian beams,” J. Mod. Opt. 39, 1761-1764 (1992).
66. G. Wu, Q. Lou, J. Zhou, J. Dong, and Y. We, “Focal shift in focused radially polarized ultrashort pulsed laser beams,” Appl. Opt., 46, 6251-6255 (2007).
67. P. P. Banerjee, G. Cook, and D. R. Evans, "A q-parameter approach to analysis of propagation, focusing, and waveguiding of radially polarized Gaussian beams," J. Opt. Soc. Am. A 26, 1366-1374 (2009)
68. W. H. Carter and M. F. Aburdence, “Focal shift in Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 4 1949-1952 (1987).
69. R. I. Hernandez-Aranda and J. C. Gutierrez-Vega, “Focal shift in vector Mathieu-Gauss Beams,” Opt. Express 16, 5838-5848 (2008).
70. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys. 17, 35-100 (1954).
71. Sec. 8. 11 of Ref. 3.
72. J. A. Stratton and L. J. Chu, “Diffraction theory of electromagnetic waves,” Phys. Rev. 56, 99-107 (1939).
73. P. Torok, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325-332 (1995).
74. R. Barakat, “Diffraction of converging electromagnetic fields in the neighborhood of the focus of a parabolic mirror having a central obscuration,” Appl. Opt. 26, 3790-3795 (1987)
75. V. S. Ignatovsky, “Diffraction by a lens having arbitrary opening,” Trans. Opt. Inst. Petrograd 1, paper 4 (1920).
76. V. S. Ignatovsky, “Diffraction by a parabolic mirror having arbitrary opening,” Trans. Opt. Inst. Petrograd 1, paper 5 (1920).
77. J. D. Jackson, “Classical Electrodynamics,” 3rd Ed. (Wiley, New York, 1999).
78. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Direction Set (Powell’s) Methods in Multidimensions,” in Numerical Recipes in C, pp. 412-420, (Cambridge University Press, Cambridge, UK, 1992).
79. M. V. Berry and N. L. Balazs, “Nonspreading Wave Packets,” Am. J. Phys. 47, 264 (1979).
80. G. A. Siviloglou and D. N. Christodoulides, “Accelerating Finite Energy Airy Beams,” Opt. Lett. 32, 979 (2007).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔