跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅明華
研究生(外文):Lo, Ming-Hua
論文名稱:成長與製作高效率氮化鎵系列發光元件
論文名稱(外文):Growth and fabrication of high efficiency GaN based light emitting devices
指導教授:王興宗郭浩中郭浩中引用關係
指導教授(外文):Wang, Shing-ChungKuo, Hao-Chung
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:141
中文關鍵詞:氮化鎵發光二極體
外文關鍵詞:GaNLight Emitting Diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
近年來,寬能隙氮化鎵系列半導體是製作寬波長發光元件非常重要的材料系統。其中氮化鎵雷射與發光二極體元件已經很廣泛利用於很多領域,如光資訊儲存、液晶顯示器背光光源、交通號誌與固態照明。
在本研究論文中,為了達到製作高效率發光元件與克服晶體成長於不適合機板所產生的問題,首先我們利用原子層沉積技術建立一新穎的方法達成高品質氮化鋁鎵/氮化鎵多重量子井結構之成長。經由原子層沉積後之應變磊晶層可有效阻擋大多數從基板產生之線缺陷。並且插入原子層沉積磊晶層之氮化鎵系列發光二極體與一般發光二極體在操作電流為20mA 相比較下可提升 27% 之外部輸出功率。
我們同時也研究利用缺陷填補法來降低磊晶層缺陷密度。此缺陷填補法是利用化學蝕刻方式定義缺陷位置,將利用沉積二氧化矽薄膜填補蝕刻後的空洞,接者使用側向磊晶方式將其填補。此方法可以有效的降低磊晶層缺陷密度從單位面積1x109/cm2 至 4x107/cm2 。在與一般發光二極體相比較之下,缺陷填補發光二極體可有效提升45%外部發光功率。
在另一方面,我們也提出倒金字塔結構位於氮化鎵與藍寶石積板介面製作高效率紫外光發光二極體,此倒金字塔結構可以同時有效提升光萃取效率與磊晶層品質。在與一般發光二極體相比較之下,此結構之外部發光功率可有效提升85%。除此之外,我們建立了首先利用機械式剝離法製作垂直式發光二極體。並且在拉曼光譜可以顯示氮化鎵磊晶層之應力在此倒金字塔結構中可以有效的被釋放。
最後,我們製作氮化鎵奈米柱結構應用於雷射操作上並討論其雷射特性。首先,利用氮化鎵磊晶層與奈米級鎳金屬遮罩進行蝕刻後形成氮化鎵奈米柱狀結構,接者利用再成長的方式重新成長新的晶格表面於奈米柱側壁。並且在光激發操作下,此結構之臨界條件為122 MW/cm2,雷射發光波長與發光半寬度分別為363 nm與 0.38 nm。我們推測此激發的現象歸因於在氮化鎵奈米柱結構中所產生隨機雷射與同調反饋的現象所致。

Recently, GaN-based wide bandgap semiconductors are very important material system for fabrication of light emitting devices in a wide range of wavelength. The GaN-based laser diodes and light emitting diodes have been widely used in many areas, such as optical storage, backlight in liquid crystal displays, traffic signal and solid state lighting.
In this study, in order to achieve high efficiency light emitting devices and overcome the epitaxial issues on foreign substrate, we demonstrated a novel approach for high quality AlxGa1-xN/GaN multiple quantum well epitaxy using atomic layer deposition (ALD) technique. The strain ALD layers effectively block a majority of threading dislocation from the substrate. The light output power for the GaN-based LED with an ALD insert layer at 20 mA was 27% higher than that for a conventional GaN-based LED structure.
We also study the defect selective passivation method to block the propagation of threading dislocations. The defect selective passivation is done by using defect selective chemical etching to locate defect sites, followed by silicon oxide passivation of the etched pits, and epitaxial over growth. The threading dislocation density in the regrown epi-layer is significantly improved from 1x109 to 4x107 cm-2. The output power of DP-LED is enhanced by 45% at 20 mA compared to a conventional LED.
On other hand, we also proposed the fabrication of high efficiency UV light emitting diodes with inverted pyramid (IP) structures at GaN-sapphire interface. The pyramid structures have significantly enhanced the light extraction efficiency and at the same time also improved the crystal quality. The output power was enhanced by 85% compared to a conventional LED. In addition, we demonstrated the first mechanical lift-off technique for fabrication of vertical type LED with IP structure. Raman spectroscopy analysis revealed that the compressive strain of GaN epilayer effectively relaxed in the IP structures.
Finally, the GaN based nanopillars structure for laser operation has been also fabricated and the laser behaviors were also been studied. The nanopillars were fabricated from a GaN epitaxial wafer by self-assembled Ni nanomasked etching, followed by epitaxial regrowth to form crystalline facets on the etched pillars. The lasing action occurs at threshold pumping power density of 122 MW/cm2 with a linewidth of 0.38 nm at 363 nm. The lasing phenomenon could to due to random laser action with coherent feedback in GaN nanopillars.

Chapter 1 Introduction 1
1.1 Background 1
1.2 GaN based material and its application for light emitting devices 2
1.3 An Overview of thesis 3
References 6
Chapter 2 Mechanisms, Fabrication Process and Measurement system 8
2.1 The physical mechanisms for light emitting diode 8
2.1.1 Internal quantum efficiency & Non-radiative recombination center 8
2.1.2 The limits of light extraction efficiency 10
2.2 Key issues for realizing high efficiency LDs 12
2.2.1 Quality issues of GaN epitaxial layers 12
2.2.2 Light extraction of GaN LEDs 13
2.3 Metal Organic Chemical Vapor Deposition System 14
2.3.1 Reaction Equations 15
2.3.2 In-Situ Reflectance Monitoring During III-Nitrides Growth 18
2.4 Etching process in molten KOH 20
2.5 Micro photoluminescence spectroscopy (μ-PL) 21
2.5.1 Pumping power density and spotsize calculation 22
References 40
Chapter 3 Growth and fabrication of high quality atomic layer deposition GaN light emitting devices 42
3.1 The progress of AlGaN/GaN Multiple Quantum Well 42
3.2 The principle of Atomic Layer Deposition 43
3.3 The Fabrication of ALD AlGaN/GaN MQWs 44
3.4 Characteristic of AlGaN/GaN MQWs with ALD grown AlGaN Barriers 44
3.5 Fabrication of near UV LED with ALD insert layer 48
3.6 Performance of near UV LED with ALD insert layer 49
References 63
Chapter 4 Defect selective passivation in GaN epitaxial growth and its application to light emitting diodes 65
4.1 The progress of low defect high quality GaN based light emitting devices 65
4.2 The Fabrication of defect passivation LED 66
4.3 Characteristic of DP-LEDs 67
References 83
Chapter 5 High Efficiency light emitting diodes with Anisotropically Etched GaN-sapphire Interface and Mechanical Lift-off Technique 85
5.1 High Efficiency light emitting diode with inverted pyramid structure 85
5.1.1 The progress of high extraction efficiency GaN LEDs 85
5.1.2 Fabrication of high efficiency light emitting diodes with inverted pyramid structure 86
5.1.3 Characteristic of Inverted Pyramid LEDs 87
5.1.4 Prediction of light extraction efficiency of IP-LED by ray trace simulation 90
5.2 Vertical type thin GaN LED with hexagonal inverted pyramid by means of the mechanical lift-off 91
5.2.1 The background of lift-off process in vertical type GaN LED 91
5.2.2 Fabrication of vertical type LED with inverted pyramid structure 92
5.2.3 Characteristic of thin GaN LED with IP structure 94
References 120
Chapter 6 Growth and Fabrication of GaN nanopillars 123
6.1 The progress of low dimension GaN structure 123
6.2 Fabrication of hexagonal GaN Nanopillars 124
6.3 Characteristics of Optically Pumped Nitride-Based nanopillars 125
6.4 Random lasing in GaN nanopillars 125
References 133
Chapter 7 Summary and Future Works 134
7.1 Summary 134
7.2 Future Works 135
7.2.1 Fabrication and characterization of ultra-low dislocation density LED with Two-step Maskless defects passivation layers 135
Publication lists 138

Patent 141

Chapter 1
[1] H.P. maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 367 (1969)
[2] J. I. Pankove, E. A. Miller and J. E. Berleyhesier, RCA Rev. 32, 283 (1971).
[3] J.I. Pankove, E.A. Miller, D. Richman and J.E. Ber keyheiser, J. Lumin. 4, 63 (1971)
[4] H. Amano, N. Sawaki, I. Akasaki and T. Yoyoda, Appl. Phys. Lett. 48, 353 (1986).
[5] S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
[6] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).
[7] S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys. 30, L1708 (1991).
[8] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
[9] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. 34, L797 (1995).
[10] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, Appl. Phys. Lett. 71, 2154 (1997).
[11] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
[12] L. J. Schowalter, G. A. Slack, J. B. Whitlock, K. Morgan, S. B. Schujman, B. Raghothamachar, M. Dudley, and K. R. Evans, Phys. Stat. Sol. (c) 0, No. 7, 1997 (2003).
[13] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. N. Wong, U. Chowdhury, H. K. Kwon, and R. D. Dupuis, Electron Lett. 36, 1971 (2000).
[14] B. S. Shelton, D. J. H. Lambert, H. J. Jang, M. M. Wong, U. Chowdhury, Z. T. Gang, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, IEEE Trans Electron Devices 48, 490 (2001).
[15] A. P. Zhang, J. Han, F. Ren, K. E. Waldrio, C. R. Abernathy, B. Luo, G. Dang, J. W. Johnson, K. P. Lee, and S. J. Pearton, Electronchem. Solid-State Lett. 4, G39 (2001).

Chapter 2
[1] A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, Jpn. J. Appl. Phys. 36, L889 (1997).
[2] M. Yamada, T. Mitani, Y, Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, Jpn. J. Appl. Phys. 41, L1431 (2002).
[3] Kenji ORITA, Satoshi TAMURA, Toshiyuki TAKIZAWA, Tetsuzo UEDA, Masaaki YURI, Shinichi TAKIGAWA and Daisuke UEDA Jpn. J. Appl. Phys. 43,5809-5813(2004)
[4] J. B. Mullin, S. J. C. Irvine, and J. Tunnicliffe, J. Cryst. Growth, 68, 214, (1984)
[5] B. Cockayne, and P. J. Wright, J. Cryst. Growth, 68, 223, (1984)
[6] H. M. Manasevit, Appl. Phys. Lett. 12, 156, (1968)
[7] S. Nakamura, T. Muksi, and M. Senoh, Appl. Phys. Lett. 64, 1687, (1994)
[8] H. M. Manasevit, and W. I. Simpson, J. Electrochem. Soc, 116, 1725, (1969)
[9] Alan G. Thompson, Materials Letters, 30, 255, (1997)
[10] H. P. Maruska, and J. J. Tietjen, Appl. Phys. Lett., 15, 367, (1969)
[11] H. M. Manasevit, F. Erdmann and W. Simpson, J. Electrochem. Soc, 118, 1864, (1971)
[12] S.Yu. Karpov, V.G. Prokofjev, E.V. Yakovlev, R.A. Talalaev, Yu.N. Makarov, MRS J.Nitride Semicond. Res. 4, 4, (1999)
[13] S. P. DenBaar, B. Y. Maa, P. D. Dapkus, and H. C. Lee, J. Cryst. Growth, 77, 188, 1986[14] D. E. Aspnes, IEEE J. Select. Topic Quant Elect., 1, 1054, (1995)
[15] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett., 48, 353, (1986)
[16] S. Nakamura, Jpn. J. Appl. Phys., 30, L1705, (1991)
[17] W. G. Breiland, and K. P. Klleen, J. Appl. Phys., 78, 6726, (1995)
[18] T.L. Chu, J. Electrochem. Soc. 118, 1200 (1971).
[19] J.I. Pankove, J. Electrochem. Soc. 119, 1118 (1972).
[20]H. Cho, D.C. Hays, C.B. Vartuli, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, F. Ren, J.C. Zolper, Mater. Res. Soc. Symp. Proc. 483, 265 (1998).
[21] C.B. Vartuli, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, F. Ren, J.C. Zolper, R.J. Shul, Solid-State Electron. 41 (12), 1947 (1998).
[22] S.J. Pearton, R.J. Shul, Gallium nitride I, in: J. Pankove, T.D. Moustakas (Eds.), Semiconductor and Semimetals Series, vol. 50, Academic Press, New York, NY, p. 103 (1998).
[23] D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, Y. Fukuda, J. Appl. Phys. 90, 4219 (2001).

Chapter 3
[1] Norio Iizuka, Kei Kaneko, Nobuo Suzuki, Takashi Asano, Susumu Noda, and Osamu Wada, Appl. Phys. Lett. 77, 648 (2000).
[2] Ümit Özgür, Henry O. Everitt, Lei He, and Hadis Morkoç, Appl. Phys. Lett. 82, 4080 (2003).
[3] T. J. Schmidt, X. H. Yang, W. Shan, J. J. Song, A. Salvador, W. Kim, Ö. Aktas, A. Botchkarev, and H. Morkoç, Appl. Phys. Lett. 68, 1820 (1996).
[4] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M. Banas, and L. Zhang, Y. K. Song, H. Zhou, and A. V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998).
[5] Joan M. Redwing, David A. S. Loeber, Neal G. Anderson, Michael A. Tischler, and Jeffrey S. Flynn, Appl. Phys. Lett. 69, 1 (1996).
[6] Takayoshi Takano, Yoshinobu Narita, Akihiko Horiuchi, and Hideo Kawanishi, Appl. Phys. Lett. 84, 3567 (2004).
[7] V. Adivarahan, W. H. Sun, A. Chitnis, M. Shatalov, S. Wu, H. P. Maruska and M. Asif Khan, Appl. Phys. Lett. 85, 2175 (2004).
[8] Y. Kawakami, X.Q. Shen, G. Piao, M. Shimizu, H. Nakanishi, and H. Okumura, J. Crystal Growth 300, 168 (2007).
[9] Y. Kawakami, A. Nakajima, X. Q. Shen, G. Piao, M. Shimizu, and H. Okumura, Appl. Phys. Lett. 90, 242112 (2007).
[10] Adapted from M. Ritala and M. Leskel, Nanotechnology, 1999, 10, 19.
[11] Y S Park, C M Park, S J Lee, Hyunsik Im, T W Kang, Jae-Eung Oh, Chang Soo Kim, and Sam Kyu Noh, Semicond. Sci. Technol. 20, 775 (2005).
[12] G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, Chih-Wei Lin, and Li Chang, Appl. Phys. Lett. 88, 061904 (2006).
[13] D. M. Follstaedt, A. A. Allerman, S. R. Lee, J. R. Michael, K. H. A. Bogart, M. H. Crawford, N. A. Missert, J. Cryst. Growth. 310, 766 (2008).
[14] J. Knall, L. T. Romano, D. K. Biegelsen, R. D. Bringans, H. C. Chui, J. S. Harris, Jr., D. W. Treat, and D. P. Bour, J. Appl. Phys. 76, 2697 (1994).
[15] Hideki Hirayama, J. Appl. Phys. 97, 091101 (2005).
[16] M. Smith, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, W. Kim, and H. Morkoc, Appl. Phys. Lett. 69, 2453 (1996).

Chapter 4
[1]. T. Mukai, K. Takekawa, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 37, L839 (1998).
[2]. O.-H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett. 71, 2638 (1997).
[3]. Eun-Hyun Park, Jin Jang,1 Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, Appl. Phys. Lett. 73, 1688 (2008).
[4]. Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su, and S. C. Wang, Journal of The Electrochemical Society, 153, G1106 (2006).
[5]. J. Xie, Ü. Özgür, Y. Fu, X. Ni, H. Morkoç, C. K. Inoki, T. S. Kuan, J. V. Foreman, H. O. Everitt, Appl. Phys. Lett. 90, 041107 (2007).
[6]. Ü. Özgür, Y. Fu, Y. T. Moon, F. Yun, H. Morkoç, H. O. Everitt, S. S. Park and K. Y. Lee, Appl. Phys. Lett. 86, 232106 (2005).
[7]. J. W. Lee, C. Sone, Y. Park, S.-N. Lee, J.-H. Ryou, R. D. Dupuis, C.-H. Hong, and H. Kim, Appl. Phys. Lett. 95, 011108 (2009).
[8]. J. L. Weyher, H. Ashraf, and P. R. Hageman, Appl. Phys. Lett. 95, 031913 (2009).
[9]. Takahiro Kozawa, Tetsu Kachi, Takeshi Ohwaki, Yasunori Taga, Norikatsu Koide and Masayoshi Koike, J. Electrochem. Soc., 143, L17 (1996).
[10]. Lu Min, Chang Xin, Fang Hui-Zhi,Yang Zhi-Jian, Yang Hua, Li Zi-Lan, Ren Qian, Zhang Guo-Yi, and Zhang Bei, Phys. Stat. Sol. (c) 1, 2438 (2004).
[11]. D. A. Stocker, E. F. Schubert and J. M. Redwing, Appl. Phys. Lett. 73, 2654 (1998).
[12]. M. Albrecht, J. L. Weyher, B. Lucznik, I. Grzegory, and S. Porowski, Appl. Phys. Lett. 92, 231909 (2008).
[13]. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, Jpn. J. Appl. Phys., Part 2 40, L583 (2001).
[14]. Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, Appl. Phys. Lett. 93, 191103 (2008).
[15]. T. Mukai, D. Morita, S. Nakamura, J. Crystal Growth 189/190, 778 (1998).
[16]. S. Nakamura, Science, 281, 956, (1998).

Chapter 5
[1]. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[2]. Chia-En Lee, Yea-Chen Lee, Hao-Chung Kuo, Tien-Chang Lu, and Shing-Chung Wang, IEEE Photonics Technol. Lett. 20, 659 (2008).
[3]. S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, Appl. Phys. Lett. 91, 013504 (2007).
[4]. A. David, T. Fujii, E. Matioli, Rajat Sharma, Shuji Nakamura, Steven P. DenBaars, and Claude Weisbuch, Appl. Phys. Lett. 88, 133514 _2006.
[5]. T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, Appl. Phys. Lett. 94, 023101 (2009).
[6]. Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su, and S. C. Wang, Journal of The Electrochemical Society, 153, G1106 (2006).
[7]. A. Bell, R. Liu, F. A. Ponce, H. Amano, I. Akasaki, and D. Cherns, Appl. Phys. Lett. 82, 349, 2003.
[8]. J. Lee, S. Ahn, S. Kim, D.-U. Kim, H. Jeon, S.-J. Lee, and J. H. Baek, Appl. Phys. Lett. 94, 101105 (2009).
[9]. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, Jpn. J. Appl. Phys., Part 2 40, L583 (2001).
[10]. Eun-Hyun Park, Jin Jang,1 Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, Appl. Phys. Lett. 73, 1688 (2008).
[11]. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Appl. Phys. Lett., 77, 2145, (2000).
[12]. P. P. Paskov, R. Schifano, T. Malinauskas, T. Paskova, J. P. Bergman, B. Monemar, S. Figge, D. Hommel, B. A. Haskell, P. T. Fini, J. S. Speck, and S. Nakamura, phys. stat. sol. (c) 3, 1499-1502 (2006)
[13] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based Light Emitters and Lasers, Spring-Verlag, Berlin and Heidelberg (1997).
[14] E. F. Schubert, Light Emitting Diodes, 1st ed. (Cambridge University Press, Cambridge, 2003).
[15] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, L. Zhang, Y. K. Song, H. Zhou and A. V. Nurmikko, Appl. Phys. Lett. 73, 1688 (1998).
[16] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L.T. Romano, and N. M. Johnson, Appl. Phys. Lett. 75, 1360 (1999).
[17] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C.E. Lee, W.K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, R. H. Horng, IEEE Photonics Technol. Lett. 17, 1809 (2005).
[18] H. Goto, S. W. Lee, H. J. Lee, H.-J. Lee, J. S. Ha, M. W. Cho, and T.Yao, Phys. Status Solidi C 5, 1659 (2008).
[19] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman, and M. Razeghi, Appl. Phys. Lett. 91, 071120 (2007).
[20] J. Park, K. M. Song, S. R. Jeon, J. H. Baek, and S. W. Ryu, Appl. Phys. Lett. 94, 221907 (2009).
[21] M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and S. C. Huang, Appl. Phys. Lett. 95, 041109 (2009).
[22] P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, Y. Gogotsi., J. Appl. Phys. 96, 2853 (2004).
[23] S. Hearne, E. Chason, J. Han, J.A. Floro, J. Figiel, J. Hunter, H. Amano, and I.S.T. Tsong, Appl. Phys. Lett. 74, 356 (1999).
[24] K. Kusakabe, A. Kikuchi and K. Kishino, Jpn. J. Appl. Phys., Part 2 40, L192 (2001).
[25] J. R. Chang, T. H. Yang, J. T. Ku, S. G. Shen, Y. C. Chen, Y. Y. Wong and C.Y. Chang, J. Cryst. Growth 311, 1997 (2009).

Chapter 6
[1] C.-H. Lee, J. Yoo, Y. J. Hong, J. Cho, Y.-J. Kim, S.-R. Jeon, J. H. Baek, and G.-C. Yi Appl. Phys. Lett. 94, 213101. (2009)
[2] Huang H W, Chu J T, Hsueh T H, Ou-Yang M C, Kuo H C and Wang S C J. Vac. Sci. Technol. B 24 1909(2006)
[3] Justin C. Johnson, Heon-Jin Choi, Kelly P. Knutsen, Richard D., Schaller, Peidong Yang, and Richard J. Saykally, Nature, Materials 1, 106 (2002)
[4] H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang J. Vac. Sci. Technol. B 24 1909(2006)
[5] Ching-Lien Hsiao,a_ Li-Wei Tu,b_ Tung-Wei Chi,c_ and Min Chen
Appl. Phys. Lett., 90, 043102 (2007)
[6] S. Kako, T. Someya, and Y. Arakawa, Appl. Phys. Lett., 80, 722 (2002)
[7] H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang Appl. Phys. Lett., 73, 3656 (2002)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳怡欣、張景媛 (2000) 。青少年與重要他人的情感關係和其自尊之相關研究暨訪談內容分析。教育心理學報,32 (1),15-40。
2. 林義男 (1988) 。國小學生家庭社經背景、父母參與及學業成就的關係。國立台灣教育學院輔導學報,11,95-141。
3. 34、 張根湖(2006)。輔成治療及另類療法於癌症之運用。北市醫學雜誌,3(1),82-91。
4. 32、 張金堅(2004)。乳癌化學治療新趨勢:標靶療法和免疫療法。健康世界,228,85-88。
5. 29、 陳定信(2010)。平平都是B型肝炎帶原者,男生為什麼比女生更容易得肝癌?健康世界,291,36-37
6. 巫有鎰 (1999) 。影響國小學生學業成就的因果機制-以台北市和台東縣作比較。教育研究集刊,43,213-242。
7. 林俊瑩、吳裕益 (2007) 。家庭因素、學校因素對學生學業成就的影響—階層線性模式的分析。國立台灣師範大學教育研究集刊,53 (4),107-144。
8. 林杏足 (2003) 。青少年自尊量表編製報告。中國測驗學會測驗學刊,50 (2) ,223-256。
9. 沈如瑩、趙梅如 (2006) 。國中小學生自尊量表之編製及模式之驗證研究。測驗學刊,53 (1),27-48。
10. 方進隆 (1998) 。體適能推展策略與未來研究方向。中華體育季刊,12 (3) 。2010年6月1日。取自:http://140.122.127.251/absimg/87/872746.pdf
11. 周新富 (2006) 。Coleman社會資本理論在台灣地區的驗證--家庭、社會資本與學業成就之關係。當代教育研究,14 (4),1-28。
12. 洪志成(1989)。學業自我概念與學業成就、重要他人的相關研究回顧。臺東師院學報,2,99-148。
13. 邱連煌 (1992) 。談兒童的自尊心與教師的職責。現代教育,3 (26),
14. 劉潔玲(2001)。學業成就不足與學習動機問題之研究。教育研究資訊,9 (3),86-105。
15. 盧俊宏 (1998) 。從事體適能運動所帶來的108種利益。臺灣省學校體育,8,17-21。