跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 21:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊汶雅
研究生(外文):Wen-Ya Chuang
論文名稱:以動態離心模型試驗模擬沉埋隧道上浮機制
論文名稱(外文):Dynamic centrifuge modeling on uplift mechanism of immersed tunnel
指導教授:李崇正李崇正引用關係
指導教授(外文):Chung-Jung Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:213
中文關鍵詞:上浮沉埋隧道液化振動台離心模型試驗
外文關鍵詞:centrifuge modeling testshaking tableliquefactionimmersed tunneluplift
相關次數:
  • 被引用被引用:4
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
隧道建構於高液化潛能之砂土層時,其周圍土壤受到強震作用會發生液化現象,隧道周圍土壤受到超額孔隙水壓力激發之影響,而喪失對隧道的束縛效果,進而使得隧道在強震作用下而上浮。
台北-板橋鐵路地下化路段,因鐵路地下化隧道採明挖覆蓋的施工方式進行,且隧道處於有液化潛能之土層中,上方覆土較少,當隧道周圍土壤遭受強震而液化時,可能產生上浮破壞的現象。本研究利用地工離心振動台試驗,於80g離心重力場情況下,模擬飽和砂土受振液化與沉埋模型隧道於液化土層之受振行為。試驗過程量測沉埋隧道上浮量及隧道周圍土壤的超額孔隙水壓力與加速度歷時反應,藉此深入探討沉埋隧道上浮機制。
根據研究結果顯示,當土體受振時激發超額孔隙水壓,使砂土顆粒間以及砂土隧道間摩擦力降低,產生隧道上浮。此外根據水力梯度分析結果顯示,土體振動時所激發之超額孔隙水壓,會因有效覆土應力不同而有所差異,故所激發之超額孔隙水壓有所差異,使產生水頭差,造成隧道下方土層會有往隧道底部垂直向上之滲流力,以及隧道側方土層會有往隧道底部之水平滲流力,將液化或接近液化浮動之砂土往隧道下方流動並擠壓,造成隧道上浮。由試驗得到之超額孔隙水壓力,可代入日本道路協會所提出之抗上浮安全係數(FS)評估方程式,經計算結果顯示,當安全係數小於0.98時隧道開始產生上浮,FS於0.74~0.98間時隧道會持續上浮。
Saturated loose sand may liquefy during strong earthquakes. Floating of embedded tunnel due to the lighter unit weight of the tunnel during the surrounding soil liquefaction may cause severe damage of tunnel. A series of dynamic centrifuge model tests was conducted in order to investigate uplift behavior of tunnel in the liquefiable sand during 1-D shaking.
The model tunnels used in the study have different unit weights and are embedded in two different embedment depths and in the different sand beds saturated with viscous fluid and water, respectively. Four accelerometers are instrumented in the model tunnel to measure the seismic response of tunnel. A dense array of accelerometers and pore water pressure transducers are also installed to measure the seismic response and the generation of pore water pressure in the surrounding soil during shaking. In addition, several LVDTs are used to measure the uplift of model tunnel, the surface settlement, and the lateral displacements on the wall of laminar box. Several colored sand layers are placed at various depths for observing the ground deformation after the tests.
According to the analysis of model test results, the following conclusions are made: (1) The magnitude of tunnel uplift is significantly influenced by the viscosity of pore fluid and the embedded depth of tunnel. The tunnel will experience the less uplift if the tunnel is embedded in the deeper depth and in the less viscous pore fluid. (2) Once the tunnel begins floating the liquefied sand will squeeze into the tunnel bottom due to high seepage forces form the outside of tunnel and below the tunnel toward the bottom of tunnel. (3) Once the Safety factor against uplift (FS) calculated with the proposed method is less than 1 the tunnel will start floating during shaking.
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xv
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 3
第二章 文獻回顧 7
2-1 土壤液化 7
2-2 隧道上浮機制 7
2-3 地下結構物抗上浮安全係數 9
2-4 地下結構物於飽和砂土中受振之模型試驗 10
2-5 地下結構物上浮位移量之計算 12
2-6 離心模型原理 18
2-6-1離心模型基本相似律 18
2-6-2動態離心模型基本相似律 19
2-7 小結 22
第三章 試驗土樣、儀器設備及試驗方法 42
3-1試驗方法 42
3-2 試驗儀器及相關設備 42
3-2-1 地工離心機 42
3-2-2 離心振動台與擷取設備 42
3-2-3積層版試驗箱 43
3-2-4移動式霣降儀 43
3-2-5 其他量測工具 44
3-3試驗土樣及土樣工程性質 44
3-3-1 試驗土樣 44
3-3-2 最大最小乾密度 44
3-3-3直接剪力試驗 45
3-4 試驗方法與步驟 45
3-4-1 前置作業 45
3-4-2重模試體之製作: 46
3-4-3離心機飛行前準備與振動試驗 47
第四章 試驗結果與討論 65
4-1分析方法 65
4-2 隧道上浮量、地表沉陷量與側向位移之比較 70
4-2-1隧道上浮反應 70
4-2-2 地盤沉陷反應 73
4-2-3 地盤側向位移 76
4-3 不同試驗條件超額孔隙水壓歷時比較 78
4-4 超額孔隙水壓比 82
4-5 水力坡降 84
4-6安全係數之探討 87
4-7 不同試驗條件加速度歷時之比較 90
4-8 隧道上浮量之計算 92
4-8-1 Tobita隧道上浮計算 92
4-8-2 Sasaki隧道上浮計算 95
4-9 土層變形 100
第五章 結論與建議 179
參考文獻 182
附錄一 模型隧道設計 185
附錄1-A 現地隧道平均單位重與隧道底部接觸應力計算 185
附錄1-B 模型隧道平均單位重與隧道底部接觸應力計算 186
附錄1-C 模型隧道材質選擇 187
附錄1-D 模型隧道細部設計 187
附錄二 滑輪式LVDT架設計 192
附錄2-A 滑輪式位移架變形模擬 192
附錄2-B 滑輪式位移架變形模擬 192
1.Adalier, K., Abdoun, T., Dobry, R., Phillips, R., Yang, D., and Naesgaard, E., “Centrifuge Modelling for Seismic Retrofit Design of an Immersed Tube Tunnel,” International Journal of Physical Modelling in Geotechnics, Vol.2 , pp. 23-35, (2003).
2.Andrus, R. D. and Stokoe II, K. H., “Liquefaction Resistance of Soils from Shear-Wave Velocity,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, pp. 1015–1025 (2000).
3.Chian, S. C., Madabhushi, S.P.G., “Floatation of Tunnel in Liquefiable Soil,” Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics , San Diego, California (2010).
4.Chian, S. C., Madabhushi, S.P.G., “Influence of fluid viscosity on the response of buried structures in earthquakes,” Physical Modelling in Geotechnics, Zurich, Switzerland, pp.111-115 (2010)..
5.Kutter, B. L., Chou , J.C., and Travasarou,T., “Centrifuge Testing of the Seismic Performance of a Submerged Cut-and-Cover Tunnel in Liquefiable Soil,” Geotechnical Earthquake Engineering and Dynamics, vol.5, pp. 1-29 (2008).
6.Koseki, J., Matsuo, O., and Koga, Y. “Uplift Behavior of Underground Structures Caused by Liquefaction of Surrounding Soil During Earthquake,”Soils and Foundations, Vol. 37, No.1, pp. 97-108 (1997).
7.Liu, H., Song, E., “Working Mechanism of Cutoff Walls in Reducing Uplift of Large Underground Structures Induced by Soil Liquefaction” Computers and Geotechnics, Vol. 33, pp.209–221 (2006).
8.Hushmand, B., Scott, R.F, and Crouse, C.B.“Centrifuge Liquefaction Tests in Laminar Box,” Geotechnical ,Vol.38,No.2,pp.253-262 (1998)
9.Hashash, Y.M.A., Hook, J.J., Schmidt , B., and Yao, J.I.C. , “Seismic design and analysis of underground structures,” Tunnelling and Underground Space Technology,Vol.16, pp.247-293 (2001).
10.Ling, H. I., Mohri, Y., Kawabata, T., Liu, H., and Burke, C., and Sun, L., “Centrifuge Modeling of Seismic Behavior of Large-Diameter Pipe in Liquefiable Soil,” Journal of Geotechnical and Geoenviromental Engineering, Vol. 129, No. 12, pp.1092-1101 (2003).
11.Hamada, N., Goto, S., Mano, H., “Protection Method of Buried Structures from Soil Liquefaction Hazard by Mean of Cutoff Walls,”土木學會論文集, Vol.62, No.1, pp.12-21 (2006).
12.Orensea, R.P., Morimotob I., Yamamotob, Y., Yumiyamac T., H., Yamamoto, K., and Sugawarad, K., “Study on Wall-Type Gravel Drains as Liquefaction Countermeasure for Underground Structures,” Soil Dynamics and Earthquake Engineering, Vol.23, pp.19–39 (2003).
13.Sharp , M. K., Dobry , R., and Abdoun ,T.H., “Liquefaction Centrifuge Modeling of Sands of Different Permeability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12, (2003).
14.Sasaki, T., and Tamura, K., “Prediction of Liquefaction-Induced Uplift Displacement of Underground Structures,” 36th Joint Meeting US-Japan Panel on Wind and Seismic Effects, pp.191-198 (2004).
15.Sasaki , T., Matsuo, O.,Kondo, K.,“Centrifuge Model Tests on Uplift Behavior of Buried Structures during Earthquake,” Earthquake Geotechnical Engineering, vol.1, pp.315-320 (1999).
16.Tanaka, H., Kusaka, H., Yasuda ,S., and Iida, T., “An Experimental study on the Cut-off Sheetpile Method as A Liquefaction-Countermeasure for Underground Structures,” 土木學會論文集, No.792, pp.87-102 (2005).
17.Towhata, I., “Geotechnical Earthquake Engineering,” Springer, Japan, pp.592-603 (2008).
18.Tobita, T., Kan , G.C., and Iai, S., “Uplift Behaviour of Buried Structure under Strong Shaking,” Physical Modelling in Geotechnics, Zurich, Switzerland, pp.1439-1444 (2010).
19.Wang, M.W., IAI , S., Tobita, T., “Effective Stress Analysis of Underground RC Structures during Earthquakes,” Annuals of Disaster. Prevention. Reaserch. Institute., Kyoto Univ., No.48 B (2005).
20.Yasuda, S., Nagase , H., Itafuji, S., Sawada, H., Mine, K., “A study on the mechanism of the floatation of buried pipes due to liquefaction,” Soil Dynamics and Earthquake Engineering, Vol.15, pp.125-132, (1995).
21.Yamashita, J., et. al.,“ A countermeasure against liquefaction caused floatation of underground structures by attaching sheet piles,” 第38回地盤工學研究發表會, pp.1853-1854 (2003).
22.Yoshimi, Y.,“Simplified Design of Structure Buried in Liquefaction Soil,” Soil and Foundations, Vol.38, No.1, pp.235–240 (1998).
23.Yang, D, Naesgaard, E, Byrne, P.M., Adalier, K., and Abdoun, T. “Numerical Model Verification and Calibration of George Massey Tunnel Using Centrifuge Models,” Candian Geotechnical Journal, Vol. 41, pp. 921-942. (2004).
24.PVL Technologies, Inc.,Model LB-2814 Laminar Box Model Container for Geotechnical Centrifuge Model Testing (2008).
25.Lee,C.J., “Shear Wave Velocity Measurements In Geotechnical Centrifuge Models,” Department of Civil Engineering National Central University Jhongli, Taiwn.(2010).
26.中華民國大地工程學會 ,建築物基礎構造設計規範,中華民國大地工程學會,第10-1-10-16頁 (2001)。
27.蘇鼎鈞、周忠仁、莊孟翰,「土壤液化防治工法及實例」,亞新工程顧問股份有限公司。
28.廖惠生、余明山、吳明峰、張修碩,「潛盾隧道液化評估及抗液化對策之探討」,岩土力學與工程學報,30卷,第1期 (2011)。
29.李咸亨,「台北市區工程地質分區」,地工技術,第54期,第25-34頁 (1996)。
30.吳偉特,「台北盆地土壤之工程特性」,土木水利,五卷,第四期,第53-64頁 (1979)。
31.盧志杰,「隧道受振反應分析之研究」博士論文,中央大學土木工程學系,中壢(2009)。
32.郭玉潔,「探討積層版試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢 (2009) 。
33.連紘震,「動態離心模型試驗探討含薄沉泥夾層的砂層之液化機制」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
34.鄺柏軒,「利用動態離心模型試驗探討砂土層受振時的剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
35.王崇儒 ,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top