(3.237.20.246) 您好!臺灣時間:2021/04/17 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱耀輝
研究生(外文):Yao-huei Ciou
論文名稱:硫酸鹽侵蝕對低放處置場障壁混凝土之劣化及推估研究
論文名稱(外文):The degradation and estimation of sulfate attacked for barrier concrete of low-level disposal field
指導教授:黃偉慶黃偉慶引用關係
指導教授(外文):Wei-Hsing Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:106
中文關鍵詞:障壁混凝土硫酸鹽侵蝕擴散係數
外文關鍵詞:concrete barriersulfate attackdiffusivity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
低放射性處置場主體由混凝土構成,由於台灣地區多雨且四面臨海,因此易因海水、地下水、酸雨以及乾濕循環的作用而造成障壁混凝土材料遭受硫酸鹽侵蝕劣化,處置場在此種服務環境下,可能對障壁混凝土造成損害或劣化而影響其耐久性。
本研究針對低放射性廢棄物處置場所使用之混凝土材料,以實驗室模擬混凝土材料長期受硫酸鹽侵蝕作用下,探討障壁混凝土材料長期在此環境下的行為,分析其可能劣化機制及對耐久性之影響。試驗結果得知: (1)混凝土受硫酸鹽侵蝕時,其入侵之深度及濃度皆隨著歷時時間增加,以卜作嵐材料取代部分水泥及降低水膠比,可提升混凝土緻密性進而改善抗硫酸鹽侵蝕能力;(2)將試驗結果依據費克第二定律(Fick’s second law)加以擬合可推估硫酸根離子擴散係數,藉以評估卜作嵐材料取代水泥之影響;(3)由微觀分析結果顯示,水泥漿體受硫酸鹽侵蝕歷時作用下,其內部微結構明顯可發現侵蝕產物,造成混凝土體積變化。另外,運用硫酸鹽侵蝕模型比對硫酸鹽侵蝕試驗之結果,可預估砂漿棒達劣化所需之時間。
The proposed engineered barrier for low-level radioactive wastes disposal site is made of concrete. Since Taiwan is surrounded by the sea, the low-level radioactive wastes disposal site is very possible to suffer from the attack of different elements of the environment, such as sea water, ground water, acid rain, wet-dry cycle, and sulfate attack.
The attack by sulfate on concrete material used at the low-level radioactive wastes disposal site was simulated in the laboratory to determine the long-term durability of concrete material. The possible degradation mechanism of concrete under sulfate attack and the influence on its durability are carefully examined in this study. The results of the laboratory works show that: (1) the depth of sulfate penetration increases with elapsed time of sulfate attack; (2) the replacement of a portion of Portland cement with pozzolanic materials and use of low w/b were found to help the concrete to resist the sulfate attack; (3) the diffusion coefficient can be determined from the sulfate profile experimental result according to Fick’s second law, such that the effect of replacement of a portion of Portland cement with pozzlanic materials can be assessed; (4) the product of sulfate attack to concrete was found in the specimens and resulted in peel-off and cracking, as demonstrated by microstructural observations.
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容 3
第二章文獻回顧 4
2.1低放射性廢棄物 4
2.1.1 低放射性廢棄物來源 4
2.1.2 低放射性廢棄物處置 4
2.1.3 低放射性廢棄物處置場之環境侵蝕 10
2.2混凝土耐久性 11
2.2.1混凝土耐久性定義 11
2.2.2 物理侵蝕 11
2.2.3化學侵蝕 13
2.3 硫酸鹽侵蝕 15
2.3.1硫酸鹽侵蝕機理 15
2.3.2 硫酸鎂的侵蝕 19
2.3.3 影響硫酸鹽侵蝕的因素 20
2.4 離子於混凝土中傳輸擴散機理 26
2.4.1 水傳輸對混凝土的影響 26
2.4.2 離子的移動方式 27
2.4.3 擴散 28
2.4.4 化學傳輸 28
2.4.5 聯合溶質傳輸 29
2.5 硫酸鹽侵蝕預測模式 31
2.6 硫酸鹽侵蝕模型 33
2.6.1 開裂對試體擴散係數的影響 34
2.6.2 膨脹模型 36
第三章 實驗計畫 37
3.1 實驗材料 37
3.2主要實驗設備 43
3.3 實驗內容及方法 47
3.3.1 實驗流程 47
3.3.2 實驗變數 49
3.3.3 實驗方法 54
第四章 結果與討論 56
4.1抗壓強度 56
4.1.1不同配比混凝土之抗壓強度發展 56
4.2 硫酸鹽侵蝕濃度剖面分析 58
4.2.1不同混凝土配比在歷時時間下之濃度剖面 58
4.2.2混凝土配比在不同歷時時間下之濃度剖面 65
4.2.3 硫酸鹽侵蝕深度 70
4.2.4 濃度剖面推估擴散係數 71
4.2.5 劣化速率之推估 80
4.3 硫酸鹽侵蝕試驗 82
4.4程式模擬 84
4.4.1 硫酸鹽侵蝕模型與劣化預估 85
4.5微觀分析 90
4.5.1 X光繞射分析 90
4.5.2電子顯微鏡觀測 91
第五章 結論與建議 96
5.1結論 96
5.2建議 99
參考文獻 100
行政院原子委員會放射性物料管理局,http://fcma.aec.gov.tw (2005)。
梁正儀,1990,「高強度水泥砂漿受硫酸鹽侵蝕問題之研究」,碩士論文,國立成功學土木工程研究所,台南。
陳柏忠,2005,「用過核子燃料乾式貯存設施之混凝土材料耐久性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳彥任,1993,「爐石取代水泥及添加石膏對抗硫酸鹽侵蝕能力影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳仕豪,2010,「氯離子入侵混凝土之擴散係數時間效應與飛灰之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
黃兆龍,1999,「混凝土性質及行為」,詹氏書局。
黃兆龍,2003,「高性能混凝土理論與實務」,詹氏書局。
潘致遠,1999,「添加矽灰及爐石對水泥薄漿工程性質之影響研究」,碩士論文,國立中央大學土木工程研究所,中壢。
歐俊顯,2001,「硫酸鹽溶液加速評估混凝土耐久性」,碩士論文,國立成功大學土木工程研究所,台南。
吳清哲,2006,「低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式評估」,碩士論文,國立中央大學土木工程研究所,中壢。
鄒蕙如,2005,「最終處置場黏土障壁材料之傳輸行為研究」,碩士論文,國立中央大學土木工程研究所,中壢。
Akoz, F., Turker, F., Koral, S., and Yuzer, N. (1999), “Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume.” Cement and Concrete Research, Vol. 29, pp. 537-544
Aguilera, J., Martinez-Ramirez, S., Pajares-Colomo, I., Blanco-Varela, M. T., (2003), “Formation of thaumasite in carbonated mortars.” Cement and Concrete Composites, Vol. 25, pp. 991-996.
A1-Dulaijan, S. U., Maslehuddin, M., A1-Zahrani, M. M., Sharif, A. M., Shameem, M., and Ibrahim, M. (2003), “Sulfate resistance of plain and blended cements exposed varving concentrations of sodium sulfate.” Cement and Concrete Composites, Vol. 25, pp. 429-437.
Al-Amoudi, O. B. (2002), “Attack on plain and blended cements exposed to aggressive sulfate environments.” Cement and Concrete Composites, Vol. 24, pp. 305-316.
Atkinson, A., D. j. Goult, and J. A. Hearne. (1984), “An Assessment of the Long-Term Durability of Concrete in Radioactive Waste Repositories” , AERE-R11465, Harwell, U.K.
Atkinson, A. and J. A. Hearne. (1990), “Mechanistic Model for the Durability of concrete Barriers Exposed to Sulphate-Bearing Groundwaters,” Materials Research Society, 176, p.149-156.
Barnett, S. J., Halliwell, M. A., Crammond, N. J., Adam, C. D., and Jackson, A. R.W. (2002), “Study of thaumasite and ettringite phases formed in sulfate/blast furnace slag slurries using XRD full pattern fitting.” Cement and Concrete Composites, Vol. 24, pp. 339-346.
Bjorn F. Johannesson., (1999), “Diffusion of a mixture of cations and anions dissolved in water,” Cement and Concrete Research, Vol. 29, pp. 1261-1270.
Boyda, A. J., Mindess, S. (2003), “The use of tension testing to investigate the effect of W/C ratio and cement type on the resistance of concrete to sulfate attack.” Cement and Concrete Research, Vol. 34, pp. 373-377.
Brown, P., Hooton, R. D. (2002), “Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements,” Cement and Concrete Composites, Vol. 24, pp. 361-370.
Cao, H. T., Bucea, L., Ray, A., Yozghatlian, S. (1997), “The effect of cement combosition and PH of environm ent on sulfate resistance of Portland cements and blended cements.” Cement and Concrete Composites, Vol. 19, pp. 161-171.
Collett, G., Crammond, N. J., Swamy, R. N., and Sharp, J. H. (2004), “The role of carbon dioxide in the formation of thaumasite.” Cement and Concrete Research, Vol. 34, No.9, pp. 1599-1612.
Chatterji, S. (1995), “On the applicability of Fick''s second law to chloride ion migration through Portland cement concrete.” Cement and Concrete Research, Vol. 25, No. 2, pp. 299-303.
Diamond, S. (1996), “Delayed ettringite formation - processes and problems,” Cement and Concrete Composites, Vol. 18, No. 3, pp. 205-215.
Diamond, S. (2003), “Thaumasite in Orange County, Southern California: an inquiry into the effect of low temperature.” Cement and Concrete Composites, Vol. 25, pp. 1161-1164.
Djuric, M., Ranogajec, J., Omorjan, R., and Miletic, S. (1996), “Sulfate corrosion of Portland cement pure and blended with 30% of fly ash.” Cement and Concrete Research, Vol. 26, No. 9, pp. 1295-1300.
Ferraris, C.F., J.R. Clifton, P.E. Stutzman and E.J. Garboczi. (1997) “Mechanisms of degration of Portland cement-based systems by sulfate attack.” Mechanisms of chemical degradation of cement-based systems. Ed. K.L. Scrivener and J.F.Young. London ; New York : E & FN Spon,. 185-192
Hanadi, S.R., Philip, B.B., and Charles, J.N.(1999), Ground Water Contamination : Trasport and Remediation, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
Hartshorn, S. A., Sharp, J. H., and Swamy, R. N. (2002), “The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution.” Cement and Concrete Composites, Vol. 24, pp. 351-359.
Higgins, D. D., Crammond, N. J. (2003), “Resistance of concrete containing ggbs to the thaumasite form of sulfate attack.” Cement and Concrete Composites, Vol. 25, pp. 921-929.
Hoglund, L. O. (1992), “Some notes on ettringite formation in cementitious materials - influence of hydration and thermodynamic constraints for durability.” Cement and Concrete Research, Vol. 22, No. 2-3, pp. 217-228.
Irassar, E. F., Maio, A. D., and Batic, O. R. (1996), “Sulfate attack on concrete with mineral admixtures.” Cement and Concrete Research, Vol. 26, No. 1, pp. 113-123.
Lagerblad B., J.Marchand and J.P. Skalny. (1999), “Long term test of concrete resistance against sulphate attack.” Materials Science of concrete : Sulfate attack Mechanisms,. American Ceramic Society, Westerbrook, Ohio: 325-336 ,.
Lee, S. T., Moon, H. Y., and Swamy, R. N. (2005), “Sulfate attack and role of silica fume in resisting strength loss.” Cement and Concrete Composites, Vol. 27, pp. 65-76.
Mbessa, M., Pe’ra, J. (2001), “Durability of high-strength concrete in ammonium sulfate solution.” Cement and Concrete Research, Vol. 31, pp. 1227-1231.
Mehta, P. K. (1986), Concrete Structure Properties and Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Monteiroa, P. J. M., Kurtis, K. E. (2003), “Time to failure for concrete exposed to severe sulfate attack.” Cement and Concrete Research, Vol. 33, pp. 1159-1163.
Mulenga, D. M., Stark, J., and Nobst, P. (2003), “Thaumasite formation in concrete and mortars containing fly ash.” Cement and Concrete Composites, Vol. 25, No. 8, pp. 907-912.
Romer, M. (2003), “Steam locomotive soot and the formation of thaumasite in shotcrete,” Cement and Concrete Composites, Vol. 25, pp. 1173-1176.
Sahu, S., Badger, S., Thaulow, N., (2003), “Mechanism of thaumasite formation in concrete slabs on grade in Southern California.” Cement and Concrete Composites, Vol. 25, pp. 889-897.
Santhanama, M., Cohenb, M. D., Olekb, J. (2003), “Effects of gypsum formation on the performance of cement mortars during external sulfate attack.” Cement and Concrete Research, Vol. 33, pp. 325-332.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars.” Cement and Concrete Research, Vol. 32, pp. 585-592.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Mechanism of sulfate attack: A fresh look Part 1: Summary of experimental results. Proposed mechanisms.” Cement and Concrete Composites, Vol. 32, pp. 915-921.
Santhanam, M., Cohen, M. D., and Olek, J. (2002), “Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms.” Cement and Concrete Composites, Vol. 33, pp. 341-346.
Sims, I., Huntley, S. A. (2004), “The thaumasite form of sulfate attack-breaking the rules.” Cement and Concrete Composites, Vol. 26, pp. 837-844.
Smallwood, I., Wild, S., and Morgan, E. (2003), “The resistance of metakaolin (MK)-Portland cement (PC) concrete to the thaumasite-type of sulfate attack (TSA)-Programme of research and preliminary results.” Cement and Concrete Composites, Vol. 25, pp. 931-938.
Tsivilis, S., Kakali, G., Skaropoulou, A., Sharp, J. H., and Swamy, R. N. (2003), “Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar.” Cement and Concrete Composites, Vol. 25, pp. 969-976.
Tixier, R. (2000), ‘‘Microstructural development and sulfate attack modeling in blended cement-based materials.’’ PhD dissertation, Arizona State University, Tempe, Ariz.
Tixier, R., Mobasher, B. (2003), “Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. I: Formulation.” ASCE Journal of Materials Engineering, Vol. 15, No. 4, pp. 305-313.
Tixier, R., Mobasher, B. (2003), “Modeling of Damage in Cement-Based Materials Subjected to External Sulfate Attack. II: Comparison with Experiments.” ASCE Journal of Materials Engineering, Vol. 15, No. 4, pp. 314-322.
Torres, S. M., Sharp, J. H., Swamy, R. N., Lynsdale, C. J., and Huntley, S. A. (2003), “Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack,” Cement and Concrete Composites, Vol. 25, pp. 947-954.
Torii, K., Taniguchi, K., and Kawamura, M. (1995), “Sulfate resistance of high ash content concrete.” Cement and Concrete Research, Vol. 25 , pp. 759-768.
Tumidajski, P. J., Chan, G. W., and Philipose, K. E. (1995), “An effective diffusivity for sulfate transport into concrete.” Cement and Concrete Research, Vol. 25, No. 6, pp. 1159-1163.
Young, J. F., Mindess, S., and Darwin, D. (2002), Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔