|
1. F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371. 2. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970. 3. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15. 4. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490. 5. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992) 571-592. 6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53. 7. C.O.Horgan and D.A.Polignone,Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485. 8. J. Sivaloganathan and S.J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J. of Elasticity, 67(2002)25-49. 9. E. Bayraktar, et. al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatique Fract. Engrg. Mater. Struct., 31(2008)184-196. 10. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358. 11. J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100. 12. O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: II—Results. J. Mech. Phys. Solids, 55(2007)1702-1728. 13. L. Cheng and T.F. Guo, Void interaction and coalescence in polymeric materials. Int. J. Solids Struct., 44(2007)1787-1808. 14. J.G. Ning, H.F. Liu and L. Shang, Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings. Sci. China Ser. G—Phys. Mech. Astron., 51(2008)1745-1760. 15. J. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973. 16. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610. 17. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66. 18. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200. 19. F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226. 20. C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263. 21. S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914 22. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401 23. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706. 24. J.N. Johnson, Dynamic facture and spallation in ductile solids. J. Appl. Phys., 52(1981)2812-2825. 25. R. Cortes, The growth of microvoids under intense dynamic loading. Int. J. Solids Struct. 29(1992)1339-1350. 26. R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses. Int. J. Solids Struct. 29(1992)1637-1645. 27. F.L. Addessio, J.N. Johnson and P.J. Maudlin, The effect of void growth on Taylor cylinder impact experiments. J. Appl. Phys., 73(1993)7288-7297. 28. Z.P. Wang, Growth of voids in porous ductile materials at high strain rate. J. Appl. Phys., 76(1994)1535-1542. 29. J. Zheng, Y.L. Bai and Z.P. Wang, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials. J. Phys. IV France Colloq. C8 (DYMAT 94) 4(1994)765-770. 30. W. Tong and G. Ravichandran, Inertial effects on void growth in porous viscoplastic materials. Trans. ASME: J. Appl. Mech., 62(1995)633-639. 31. X.Y. Wu, K.T. Ramesh and T.W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids, 51(2003)1-26. 32. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and growth in solids: A self-consistent statistical theory. J. Mech. Phys. Solids, 56(2008)336-359. 33. M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973. 34. X Yuan, Z. Zhu and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech. (English Edition), 26(2005)973-981. 35. X Yuan, Z. Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech., 41(2006)294-303. 36. R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England,1984. 37. T.J. Paulson, et. al., Shaking table study of base isolation for masonary buildings. J. Struct. Eng., 117(1991)3315-3336. 38. A.D. Luca, et. al., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Eng. Struct. Dyn., 30(2001)1125-1145. 39. B. Yoo and Y.H. Kim, Study on effects of damping in laminated rubber bearings on seismic responses for a 1/8 scale isolated test structure. Earthquake Eng. Struct. Dyn., 31(2002)1777-1792. 40 Y.M. Wu and B. Samali, Shake table testing of a base isolated model. Eng. Struct., 24(2002)1203-1215. 41. N. Lakshmanan, et. al., Experimental investigations on the seismic response of a base-isolated reinforced concrete frame model. J. Performance Constructed Facilities, ASCE, 22(2008)289-296. 42. T.H. Kim, Y.J. Kim and H.M. Shin, Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings. Struct Eng. Mech., 29(2008)259-278. 43. J.F. Kang and Y.Q. Jiang, Improvement of cracking-resistance and flexural behavior of cement-based materials by addition of rubber particles. J. Wuhan Univ. Tech.—Mater.Sci. Edition, 23(2008)579-583. 44. G. Skripkiunas, et. al., Deformation properties of concrete with rubber waste additives. Mater. Sci.—Medziagotyra, 13(2007)219-223. 45. M.K. Batayneh, et., al., Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(2008)2171-2176. 46. L. Zheng, et. al., Strength, modulus of elasticity, and brittleness index of rubberized concrete. J. Mater. Civil Eng., ASCE, 20(2008)692-699. 47. P.J. Blatz and W.L. Ko , Application of finite elastic theory to the deformation of rubbery materials . Trans.Soc. Rheol. , 6 (1962) 223-251. 48. M. Navarro, et. al., Biomaterials in orthopaedics. J. R. Soc. Interface, 5(2008)1137-1158. 49. Y. Jung, et. al., Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. J. Biomaterials Sci.—Polymer Edition, 19(2008)61-74. 50. T. Hu and J.P. Desai, Characterization of soft-tissue material properties: Large deformation analysis. ‘Medical Simulation, Proceedings’ in Lecture Notes in Computer Science, 3078(2004)28-37. 51. J.Z. Wu, et. al., Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis. Bio-Medical Mater. Eng., 13(2003)373-385. 52. Z.Q. Liu and M.G. Scanlon, Modelling indentation of bread crumb by finite element analysis, Biosystems Eng., 85(2003)477-484. 53. M. Zidi, Circular shearing and torsion of a compressible hyperelastic and prestressed tube. Int. J. Non-Linear Mech., 35 (2000) 201-209. 54. M. Zidi, Torsion and axial shearing of a compressible hyperelastic tube. Mech. Res. Comm., 26 (1999) 245-252. 55. M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics. Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub., 1 (1998) 191-202. 56. M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci., 38 (2000) 1481-1496. 57. Y. Huang, et. al., Cavitation instabilities in elastic-plastic solids. J. Mech. Phy. Solid, 39(1991)223-241. 58. V. Tvergaard, et. al., Cavitation instabilities in a power hardening elastic-plastic solid. Eur. J. Mech. A/Solids, 11(1992)215-231. 59. V. Tvergaard and J.W. Hutchinson, Effects of initial void shape on the occurrence of cavitation instabilities in elastic-plastic solids. J. Appl. Mech. Trans. ASME, 60(1993)807-812. 60. Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.
|