跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.218) 您好!臺灣時間:2024/11/07 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王承宇
研究生(外文):Cheng-yu Wang
論文名稱:呆荷重與衝擊荷重作用下新虎克定律圓球微孔動態反應
指導教授:李顯智李顯智引用關係
指導教授(外文):Hin-chi Lei
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:74
中文關鍵詞:衝擊荷重孔洞擴張橡膠材料
外文關鍵詞:impulse loadvoid growthrubber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討在新虎克定律橡膠材料固體圓球上施加呆荷重和衝擊荷重,固體圓球內部微小孔洞的反應。橡膠材料在很多方面都有不少應用,如土木工程的建築物隔震器、機械方面的輪胎等等都有使用橡膠材料。當橡膠內部有微小孔洞則外部受力後微孔會有擴張,若發展成不穩定的擴張運動可能會造成橡膠結構上的破壞。本文將探討新虎克橡膠材料內部微小孔洞受到呆荷重和衝擊荷重作用下的動態反應,當這些荷重到達某個臨界值微孔會產生急速的擴張,而我們要計算出這些荷重臨界值的具體數值。
In this paper, a response of solid sphere composed of neo-hookean material which has a micro-void in the center is studied. The outer surface of the sphere is subjected to dead load and impulse load. Materials of rubber have many applications in many areas, such as vibration isolation equipments and wheel tires, etc. If the rubber is embedded with a micro-void, then this void may grow when the outer surface of the rubber is subjected to some tensile loadings. Such kind of growth will become unstable after the loadings reach to some critical values. And unstable growth means the local failure of the material. This thesis studies the dynamic response of a neo-Hooken sphere which has a micro-void and is subjected to a suddenly applied dead load and impulse load simultaneously. We want to compute the critical value of the dead load and its variation due to the interaction with the impulse load.
中文摘要 ……………………………………………………………… i
英文提要 ……………………………………………………………… ii
誌謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
圖目錄 ……………………………………………………………… v
表目錄 ……………………………………………………………… ix
符號說明 ……………………………………………………………… x
第一章 緒論………………………………………………………… 1
第二章 基礎理論…………………………………………………… 4
2-1 推導Neo-Hookean圓球運動方程式……………………… 4
2-2 Micro-void的運動方程式推導…………………………… 9
第三章 呆荷重與衝擊荷重對孔洞的影響………………………… 10
3-1 衝擊荷重與孔洞最大反應………………………………… 12
3-2 呆荷重與衝擊荷重總和為定值下孔洞的最大反應……… 26
3-3 衝擊荷重與初始條件……………………………………… 30
3-4 jump condition…………………………………………… 32
3-5 不同方程式解法之比較…………………………………… 36
第四章 衝擊荷重與呆荷重作用下微孔的破壞定義……………… 39
第五章 不同解法與容忍誤差……………………………………… 48
第六章 結論與建議………………………………………………… 55
參考文獻 ……………………………………………………………… 57
1. F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371.
2. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970.
3. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15.
4. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490.
5. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992) 571-592.
6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53.
7. C.O.Horgan and D.A.Polignone,Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485.
8. J. Sivaloganathan and S.J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J. of Elasticity, 67(2002)25-49.
9. E. Bayraktar, et. al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatique Fract. Engrg. Mater. Struct., 31(2008)184-196.
10. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
11. J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
12. O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: II—Results. J. Mech. Phys. Solids, 55(2007)1702-1728.
13. L. Cheng and T.F. Guo, Void interaction and coalescence in polymeric materials. Int. J. Solids Struct., 44(2007)1787-1808.
14. J.G. Ning, H.F. Liu and L. Shang, Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings. Sci. China Ser. G—Phys. Mech. Astron., 51(2008)1745-1760.
15. J. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
16. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
17. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
18. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
19. F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226.
20. C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263.
21. S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914
22. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401
23. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
24. J.N. Johnson, Dynamic facture and spallation in ductile solids. J. Appl. Phys., 52(1981)2812-2825.
25. R. Cortes, The growth of microvoids under intense dynamic loading. Int. J. Solids Struct. 29(1992)1339-1350.
26. R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses. Int. J. Solids Struct. 29(1992)1637-1645.
27. F.L. Addessio, J.N. Johnson and P.J. Maudlin, The effect of void growth on Taylor cylinder impact experiments. J. Appl. Phys., 73(1993)7288-7297.
28. Z.P. Wang, Growth of voids in porous ductile materials at high strain rate. J. Appl. Phys., 76(1994)1535-1542.
29. J. Zheng, Y.L. Bai and Z.P. Wang, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials. J. Phys. IV France Colloq. C8 (DYMAT 94) 4(1994)765-770.
30. W. Tong and G. Ravichandran, Inertial effects on void growth in porous viscoplastic materials. Trans. ASME: J. Appl. Mech., 62(1995)633-639.
31. X.Y. Wu, K.T. Ramesh and T.W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids, 51(2003)1-26.
32. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and growth in solids: A self-consistent statistical theory. J. Mech. Phys. Solids, 56(2008)336-359.
33. M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973.
34. X Yuan, Z. Zhu and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech. (English Edition), 26(2005)973-981.
35. X Yuan, Z. Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech., 41(2006)294-303.
36. R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England,1984.
37. T.J. Paulson, et. al., Shaking table study of base isolation for masonary buildings. J. Struct. Eng., 117(1991)3315-3336.
38. A.D. Luca, et. al., Base isolation for retrofitting historic buildings: Evaluation of seismic performance through experimental investigation. Earthquake Eng. Struct. Dyn., 30(2001)1125-1145.
39. B. Yoo and Y.H. Kim, Study on effects of damping in laminated rubber bearings on seismic responses for a 1/8 scale isolated test structure. Earthquake Eng. Struct. Dyn., 31(2002)1777-1792.
40 Y.M. Wu and B. Samali, Shake table testing of a base isolated model. Eng. Struct., 24(2002)1203-1215.
41. N. Lakshmanan, et. al., Experimental investigations on the seismic response of a base-isolated reinforced concrete frame model. J. Performance Constructed Facilities, ASCE, 22(2008)289-296.
42. T.H. Kim, Y.J. Kim and H.M. Shin, Seismic performance assessment of reinforced concrete bridge piers supported by laminated rubber bearings. Struct Eng. Mech., 29(2008)259-278.
43. J.F. Kang and Y.Q. Jiang, Improvement of cracking-resistance and flexural behavior of cement-based materials by addition of rubber particles. J. Wuhan Univ. Tech.—Mater.Sci. Edition, 23(2008)579-583.
44. G. Skripkiunas, et. al., Deformation properties of concrete with rubber waste additives.
Mater. Sci.—Medziagotyra, 13(2007)219-223.
45. M.K. Batayneh, et., al., Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(2008)2171-2176.
46. L. Zheng, et. al., Strength, modulus of elasticity, and brittleness index of rubberized concrete. J. Mater. Civil Eng., ASCE, 20(2008)692-699.
47. P.J. Blatz and W.L. Ko , Application of finite elastic theory to the deformation of rubbery materials . Trans.Soc. Rheol. , 6 (1962) 223-251.
48. M. Navarro, et. al., Biomaterials in orthopaedics. J. R. Soc. Interface, 5(2008)1137-1158.
49. Y. Jung, et. al., Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. J. Biomaterials Sci.—Polymer Edition, 19(2008)61-74.
50. T. Hu and J.P. Desai, Characterization of soft-tissue material properties: Large deformation analysis. ‘Medical Simulation, Proceedings’ in Lecture Notes in Computer Science, 3078(2004)28-37.
51. J.Z. Wu, et. al., Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis. Bio-Medical Mater. Eng., 13(2003)373-385.
52. Z.Q. Liu and M.G. Scanlon, Modelling indentation of bread crumb by finite element analysis, Biosystems Eng., 85(2003)477-484.
53. M. Zidi, Circular shearing and torsion of a compressible hyperelastic and prestressed tube. Int. J. Non-Linear Mech., 35 (2000) 201-209.
54. M. Zidi, Torsion and axial shearing of a compressible hyperelastic tube. Mech. Res. Comm., 26 (1999) 245-252.
55. M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics. Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub., 1 (1998) 191-202.
56. M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci., 38 (2000) 1481-1496.
57. Y. Huang, et. al., Cavitation instabilities in elastic-plastic solids. J. Mech. Phy. Solid, 39(1991)223-241.
58. V. Tvergaard, et. al., Cavitation instabilities in a power hardening elastic-plastic solid. Eur. J. Mech. A/Solids, 11(1992)215-231.
59. V. Tvergaard and J.W. Hutchinson, Effects of initial void shape on the occurrence of cavitation instabilities in elastic-plastic solids. J. Appl. Mech. Trans. ASME, 60(1993)807-812.
60. Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top