(3.235.41.241) 您好!臺灣時間:2021/04/21 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李雨純
研究生(外文):Yu-Chun Lee
論文名稱:製備具核殼結構之均一粒徑次微米球
論文名稱(外文):Synthesis of monodispersed submicrospheres containing soft shell structure
指導教授:陳暉陳暉引用關係
指導教授(外文):Hui-Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:152
中文關鍵詞:玻璃轉移溫度光子晶體均ㄧ粒徑次微米球無乳化劑乳化聚合
外文關鍵詞:Soap-free emulsion polymerizationPhotonic crystalsMonodispersed submicrospheresGlass transition temperature
相關次數:
  • 被引用被引用:2
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究乃利用二階段無乳化劑乳化聚合法於沸騰溫度下製備具軟殼結構之均ㄧ粒徑次微米球,將MAA 與St 聚合反應一段時間後,添加BMA單體製備出核殼結構次微米球,分別討論第一階段轉化率、單體添加量、鏈轉移劑的影響以及不同殼層單體的影響,並利用自組裝之方法將其應用於三維光子晶體之組建。
  結果顯示, 在第一階段單體轉化率為80% 時製備之
P(MAA-co-St)/P(St-co-BMA)核殼結構次微米球,其核殼重量比例由0.6 製備至2,經由分析可發現兩個Tg,當BMA 添加量增加,可使殼層高分子之玻璃轉移溫度由56.7℃降至39℃,而添加鏈轉移劑則不使Tg 有所改變,另外藉由添加丙烯酸丁酯(BA)為殼層單體,可使其殼層單體降低至14.9℃,且其粒徑範圍在224-282 nm 之間,Cv 皆小於4%。
  此外將不同粒徑之次微米球經由毛細力將其自組裝,其光子能隙(PBG)可涵蓋整個可見光範圍,呈現出不同的結構性色彩。在紫外線-可見光光譜儀鑑定之下,次微米球及染料球以面心立方(FCC)最密堆積後所形成之光子能隙位置與布拉格定律計算之理論值相符合,此外染料球會使光子晶體之結構色彩能更加鮮明。
  Preparation of monodispersed P(MAA-co-St) /P(St-co-BMA) core-shell structure submicrospheres has been developed by two-step soap-free emulsion polymerization at boiling status. MAA and St were polymerized during a period
of time. Then BMA was introduced to the above reaction solution and polymerized. The conversion of the first step, the amount of monomer and chain transfer agent, and kinds of monomers at the second step were discussed. The
application of these monodispersed submicrospheres and dye-doped submicrospheres self-assembled to three dimensional photonic crystals (PCs) also have been discussed.
  The results showed that P(MAA-co-St)/P(St-co-BMA) core/shell submicrospheres were easily prepared when the first step conversion was 80%. The weight ratios of core to shell were 0.6-2.0. There were two Tgs appeared in
the core/shell submicrospheres. The Tg of shell were decreased from 56.7 ℃ to 39 ℃ with increasing the content of BMA monomer. The Tg of shell were kept the same value when the chain transfer agent was introduced. Futhermore, the Tg of shell was decreased to 14.9 ℃ by adding BA monomer. The size and Cv of core/shell submicrospheres were 224-282 nm and less than 4%, respectively.
  When the various sizes of monodispersed submicrospheres were self-assembled by capillarity driven, the structure colors in the whole range of the visible lights were observed. In UV-Vis spectra, the reflection of
self-assembled PCs of submicrospheres and dye-containing submicrospheres with the (111) planes in face-centered cubic (FCC) arrangement to confirm with the theoretical value calculated by Bragg’s law. Moreover, the structure color of dye-containing submicrospheres would be more brightly.
摘要 ........................................................................................................................ I
ABSTRACT ........................................................................................................ II
謝誌 ..................................................................................................................... IV
目錄 ...................................................................................................................... V
圖目錄 .............................................................................................................. VIII
表目錄 .............................................................................................................. XIV
符號說明 ........................................................................................................... XV
第一章 緒論 ......................................................................................................... 1
1-1 均一粒徑高分子球之簡介與文獻回顧 .................................................... 1
1-2 核殼結構高分子球之簡介與文獻回顧 .................................................... 4
1-3 光子晶體之簡介與文獻回顧 .................................................................... 6
1-4 研究動機及目的 ....................................................................................... 10
第二章 實驗 ....................................................................................................... 11
2-1 實驗藥品 ................................................................................................... 11
2-2 實驗儀器 ................................................................................................... 13
2-3 實驗方法 ................................................................................................... 14
2-3-1 單體精製 ........................................................................................... 14
2-3-2 快速製備具核/殼結構之均ㄧ粒徑次微米球.................................. 14
2-3-2-1 P(St-co-MAA)共聚合之高分子核心 ......................................... 15
2-3-2-2 核/殼結構次微米球之製備 ....................................................... 16
2-3-3 以溶劑導入染料法製備次微米染料球 ........................................... 19
2-3-4 光子晶體之製備 ............................................................................... 20
2-4 儀器分析 ................................................................................................... 20
2-4-1 傅立葉轉換紅外線光譜儀(FTIR)測試條件 ................................... 20
2-4-2 掃描式電子顯微鏡(SEM)測試條件 ................................................ 20
2-4-3 微差掃描熱分析儀(DSC)測試條件 ................................................ 20
2-4-4 紫外-可見光光譜儀(UV-Vis)測試條件 .......................................... 21
2-4-5 動態粒徑分析儀(DLS)測試條件 .................................................... 21
2-4-6 凝膠滲透色譜儀(GPC)測試條件 ..................................................... 21
第三章 結果與討論 ........................................................................................... 22
3-1 高分子核心之製備 .................................................................................. 23
3-2 二階段法製備表面改質次微米球之研究 .............................................. 35
3-2-1 第一階段不同轉化率下添加BMA 為殼層之研究 ....................... 37
3-2-1-1 表面型態與粒徑分析 ................................................................... 37
3-2-1-2 熱性質分析 .................................................................................... 37
3-2-2 以甲基丙烯酸正丁酯為殼層結構之研究 ....................................... 43
3-2-2-1 表面型態與粒徑分析 ................................................................... 43
3-2-2-2 熱性質分析 .................................................................................... 43
3-2-2-3 分子量分析 .................................................................................... 44
3-2-3 以短鏈甲基丙烯酸正丁酯為殼層結構之研究 ................................ 53
3-2-3-1 表面型態與粒徑分析 ................................................................... 53
3-2-3-2 熱性質分析 .................................................................................... 53
3-2-3-3 分子量分析 .................................................................................... 54
3-2-4 以甲基丙烯酸正丁酯及丙烯酸丁酯為殼層結構之研究................ 62
3-2-4-1 表面型態與粒徑分析 ................................................................... 62
3-2-4-2 熱性質分析 .................................................................................... 62
3-3 次微米球粒徑均ㄧ度之探討 .............................................................. 67
3-4 光子晶體之製備研究與其性質探討 ....................................................... 70
3-4-1 溫度對PS/P(St-co-BMA)之影響及其性質探討 ............................ 70
3-4-2 溫度對不同轉化率下合成之PS/P(St-co-BMA)之影響及其性質探
討 .................................................................................................................. 84
3-4-3 溫度對短鏈殼層之PS/P(St-co-BMA)之影響及其性質探討 ........ 92
3-4-4 溫度對PS/P(St-co-BMA-co-BA)之影響及其性質探討 .............. 103
3-5 以溶劑導入染料法製備次微米染料球之研究 ..................................... 111
第四章 結論 ..................................................................................................... 125
參考文獻 ........................................................................................................... 127
(1) Z. S. Haidar, 〝Bio-inspired/-functional colloidal core-shell polymeric-based nanosystems: technology promise in tissue engineering, bioimaging and nanoMedicine〞, Polymers, 2, 323-352, (2010)
(2) Y. Zhao, M. Moddaresi, S. A. Jones, 〝A dynamic topical
hydrofluoroalkane foam to induce nanoparticle modification and drug release in situ〞, European Journal of Pharmaceutics and Biopharmaceutics, 72, 521-528, (2009)
(3) K. Nagase, J. Kobayashi, A. Kikuchi et al., 〝Interfacial property modulation of thermoresponsive polymer brush surfaces and their interaction with biomolecules〞, Langmuir, 23, 9409-9415, (2007)
(4) Y. Gu, Q. Zhang, Y. Li et al., 〝Nitridation from core-shell oxides for tunable luminescence of BaSi2O2N2 : Eu2 +LED phosphors〞, Journal of Materials Chemistry, 20, 6050-6056, (2010)
(5) B. Platzer, R. D. Klodt, B. Hamann et al., 〝The influence of local flow conditions on the particle size distribution in an agitated vessel in the case of suspension polymerization of styrene〞, Chemical Engineering and Processing, 44, 1228-1236, (2005)
(6) J. W. Kim, K. D. Suh, 〝Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology 〞, Polymer, 41, 6181-6188, (2000)
(7) H. Jung, K. Song, K. Lee et al., 〝Reaction and stabilizing mechanism of the cross-type macromonomers in the dispersion polymerization of styrene〞, Journal of Colloid and Interface Science, 308, 130-141, (2007)
(8) K. Zhang, W. Wu, H. Meng et al., 〝Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure〞, Powder Technology, 190, 393-400, (2009).
(9) T. Yamamoto, M. Nakayama, Y. Kanda et al., 〝Growth mechanism of soap-free polymerization of styrene investigated by AFM 〞, Journal of Colloid and Interface Science, 297, 112-121, (2006)
(10) Z. Z. Gu, H. H. Chen, S. Zhang et al., 〝Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals〞, Colloid and Surfaces
A: Physicochem. Eng. Aspects, 302, 312-319, (2007).
(11) S. C. Gu, T. Sakamoto, Y. Yamada et al., 〝Agitation requirement for synthesis of micron-sized monodisperse polymer particles in soap-free polymerization method〞, Colloid and Polymer Science, 285, 581-586, (2007).
(12) T. P. Chiu, T. M. Don, 〝Synthesis and characterization of poly(methyl methacrylate) nanoparticles by emulsifier-Free emulsion polymerization
with a redox-initiated system〞, Journal of Applied Polymer Science, 109, 3622–3630, (2008).
(13) F. F. Fang, J. H. Kim, H. J. Choi et al., 〝Synthesis and electrorheological response of nano-sized laponite stabilized poly(methyl methacrylate) spheres〞, Colloid and Polymer Science, 287, 745-749,(2009).
(14) G. Liu, P. Liu, 〝Synthesis of monodispersed crosslinked nanoparticles decorated with surface carboxyl groups via soapless emulsion polymerization 〞, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354, 377–381, (2010).
(15) S. T. Camli, F. Buyukserin, M. S. Yavuz et al., 〝Fine-tuning of functional poly(methylmethacrylate) nanoparticle size at the sub-100nm scale using surfactant-free emulsion polymerization 〞, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 366, 141–146, (2010).
(16) E. Rusena, A. Mocanu, B. Marculescu et al.〝Obtaining complex structures starting from monodisperse poly(styrene-co-2-hydroxyethylmethacrylate) spheres 〞, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, 35-41, (2011).
(17) Y. Y. Liu, M. Y. Lo, H. Chen, 〝Characterization of monodisperse copolymer submicrospheres with branched structures and different glass-transition temperatures prepared by soap-free emulsion polymerization〞, Journal of Applied Polymer Science, 120, 2945–2953, (2011)
(18) 川瀬進, Sen’i Gakkaishi, 60(7), 371, (2004).
(19) Z. Y. Shen, L. Y. Li, Y. Li et al., 〝Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO2/TiO2 core/shell microspheres as high performance photocatalyst for dye degradation〞, Journal of Colloid and Interface Science, 354, 196-201, (2011).
(20) O. Niitsoo, A. Couzis, 〝Facile synthesis of silver core – silica shell composite nanoparticles〞, Journal of Colloid and Interface Science, 354,887-890, (2011).
(21) S. Dembski, S. Rupp, C. Gellermann, 〝Luminescent silicate core-shell nanoparticles: synthesis, functionalization, optical and structural properties〞
Journal of Colloid and Interface Science, 358, 32-38, (2011).
(22) C. Lai, H. Z. Zhang, G. R. Li et al.,〝Mesoporous polyaniline/TiO2 microspheres with core-shell structure as anode materials for lithium ion battery〞, Journal of Power Sources, 196, 4735-4740, (2011).
(23) K. Nischala, T. N. Rao, N. Hebalkar, 〝Silica–silver core–shell particles for antibacterial textile application〞, Colloids and Surfaces B: Biointerfaces,
82, 203-208, (2011).
(24) Y. Shang, P. Yang, W. Wang et al., 〝Sol–gel preparation and characterization of uniform core-shell structured LaInO3:Sm3+/Tb3+@SiO2 phosphors〞, Journal of Alloys and Compounds, 509, 837–844, (2011).
(25) Y. Mu, T Qiu, X. Li et al., 〝Layer-by-layer synthesis of multilayer core_shell latex and the film formation properties 〞, Langmuir, 27, 4968-4978, (2011).
(26) Y. Y. Liu, H. Chen, K. Ishizu, 〝Facile surface immobilization of ATRP initiators on colloidal polymers for grafting brushes and application to colloidal crystals〞, Langmuir, 27, 1168–1174, (2011)
(27) S. John, 〝Strong localization of photons in certain disordered dielectric superlattices〞, Physical Review Letters, 58, 2486-2489, (1987).
(28) E. Yablonovitch, 〝Inhibited spontaneous emission in solid-state physics and electronics〞, Physical Review Letters, 58, 2059-2062, (1987).
(29) L. P. Biro, Z. Balint, K. Kertesz, 〝Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair〞, Physical Review E, 67, 021907, (2003)
(30) K. Liu, T. A. Schmedake, R. Tsu, "A comparative study of colloidal silica spheres: Photonic crystals versus Bragg''s law", Physics Letters A, 372, 4517-4520, (2008).
(31) W. Wang, B. Gu, L. Liang, 〝Effect of anionic surfactants on synthesis and self-assembly of silica colloidal nanoparticles〞, Journal of Colloid and Interface Science, 313, 169–173, (2007)
(32) S. Wong, V. Kitaev, G. A. Ozin, 〝Colloidal crystal films: advances in universality and perfection〞, Journal of the American Chemical Society , 125, 15589-15598, (2003).
(33) E. Yablonovitch, T. J. Gmitter, K. M. Leung,〝Photonic band structure: The face-centered-cubic case employing nonspherical atoms〞, Physical Review Letter, 67, 2295-2298, (1991)
(34) L. Wang, S. Zhang, Q. Wang et al., 〝Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography〞, Applied Physics A: Materials Science & Processing, 95, 329-334, (2009)
(35) A. J. Wang, S. L. Cheng, P. Dong et al., 〝Fabrication of colloidal photonic crystals with heterostructure by spin-coating method〞, Chinese Physics
Letters, 26, 024210, (2009).
(36) Y. K. Lin, P. R. Herman, W. Xu, 〝In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction〞, Journal of Applied Physics, 102, 073106, (2007).
(37) T. Kanai, T. Sawada, A. Toyotama et al., 〝Air-pulse-drive fabrication of photonic crystal films of colloids with high spectral quality〞, Advanced Functional Materials, 15, 25-29, (2005).
(38) Y. Xia, B. Gates, Y. Yin et al., 〝Monodispersed colloidal spheres: old materials with new applications〞, Advanced Material, 10, 693-713, (2000)
(39) Z. Z. Gu, Q.B. Meng, S. Hayami et al., 〝Self-assembly of submicron particles between electrodes〞, Journal of Applied Physics, 90, 2042-2045, (2001)
(40) H. Wang, K. P. Yan, J. Xie et al., 〝Fabrication of ZnO colloidal photonic crystal by spin-coating method〞, Materials Science in Semiconductor Processing, 11, 44–47, (2008).
(41) L. Cui, Y. Zhang, J. Wang et al., 〝Ultra-fast fabrication of colloidal photonic crystals by spray coating〞, Macromolecular Rapid Communication,
30, 598–603, (2009).
(42) A. J. Wang, S. L. Chen, P. Dong et all, 〝Fabrication of colloidal photonic crystals with heterostructure by spin-coating method〞, China Physical Letter, 26, 024210, (2009).
(43) Y. Fu, Z. Jin, G. Liu et al., 〝Self-assembly of polystyrene sphere colloidal crystals by in situ solvent evaporation method〞, Synthetic Metals, 159, 1744–1750, (2009).
(44) T. S. Deng, J. Y. Zhang, K. T. Zhu et al., 〝Highly monodisperse vinyl functionalized silica spheres and their self-assembled three-dimensional colloidal photonic crystals〞, Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 356, 104-111, (2010).
(45) T. Kanai, T. Sawada, J. Yamanaka, 〝Fabrication of large-area silica colloidal crystals immobilized in hydrogel film〞, Journal of the Ceramic Society of Japan, 118, 370-373, (2010).
(46) J. Brandrup, E. H. Immergut, Polymer handbook, 3rd ed, A Wiley-Interscience, U S, (1989).
(47) R. Larrain, L. H. Tagle, F. R. Diaz, 〝Glass transition temperature-molecular weight relation for poly(hexamethylene perchloroterephthalamide) 〞, Polymer Bulletin, 4,487-490, (1984)
(48) 林惠敏,「均ㄧ粒徑次微米染料球之合成與其自組裝排列之研究」,國立中央大學化學工程與材料工程學系碩士論文 (2008)。
(49) 羅名譽,「快速合成具核殼結構之均一粒徑次微米球與其表面改質之特性研究」,國立中央大學化學工程與材料工程學系碩士論文 (2009)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔