( 您好!臺灣時間:2021/04/12 12:57
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chia-Nan Yuan
論文名稱(外文):Gel and Glass Phase Formed by SiC Colloids
指導教授(外文):Heng-Kwong Tsao
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Granular material plays an important role in our daily life as well as in engineering and science. In my study, I investigate the behaviors and properties of dry granular materials and wet granular materials. Furthermore, the properties of granular materials can be changed by addition of the surfactants. There are three main topic in my paper, described as follow:
  The concentrated suspension of silicon carbide (SiC) particles are often used as cutting fluids for Si-wafer. How to maintain suspended states is thus essential. The suspension of micron-sized SiC particles in ethylene glycol (EG) is liable to sedimentation although the particles do not aggregate. By addition of surfactant dodecylamine, however, we show that the suspension can form particle gel. According to rheological measurements, the ratio of storage to loss modulus is about 3, indicating a weak gel. Moreover, the observation of dynamic yield stress reveals the existence of the structure caused by the particle-particle attraction. The influence of surfactant concentration on the gel properties can be classified into two regimes. At low concentration, both gel height and yield stress grow with increasing surfactant concentration. However, as the concentration exceeds a certain value, they decline with increasing surfactant concentration. A gelling mechanism has been proposed and examined. Since the tails of alkyl amines are solvophobic, the surfactant molecules in EG prefer to stay on the particle with the tail orienting toward the surface. The attraction between particles originates from hydrogen bonds formed between surfactant molecules adsorbed on different particles. Thus gelation fails when typical surfactants such as sodium dodecyl sulfate are employed. Acidification by HCl also hinders the gel formation by alkyl amine.
Granular materials consisting of macroscopic grains have commercial applications and their flow behavior plays key role in geophysics. However, flow characteristics of nano-granules differ significantly from those of granules. The latter can form low-volume fraction (5%) particle gels in air and is difficult to exhibit gravity-driven granular flow. It is found that although dry nano-granules possess a high compressibility, close to gases, they are less susceptible to flow than granules due to high yield stress and viscosity. Such differences can be attributed to van der Waals attractions, which support the weight of nanoparticles to form aerogels and resist shearing deformation. The rheology of granular materials is relevant to many areas of nature and industry, from mountain avalanches and mud slides, to grain transport and storage.
Partially wet granular medium is a mouldable material due to capillary cohesion and its behavior plays key roles in geophysics. However, completely wet nanogranules may also demonstrate mouldable properties via van der Waals attraction and they exhibit colloidal glass or gel characteristics, depending on the solvent. As solvent-enhanced attractions prevail, phase separation is observed and nanogranular gel can be obtained. In contrast, as cage effects dominate, the stable slurry is seen and the nanogranular glass can be prepared. Upon surfactant addition, however, the arrested glass state changes into colloidal gel due to the formation of hydrogen bonds between nanogranules.
Abstract I
Contents III
List of Figures V
Chapter 1 Introduction 1
1-1 Colloids 1
1-2 Surfactants 6
1-3 Cutting liquids 9
1-4 Gels 16
1-5 Granular media 18
1-6 Reference 21
Chapter 2 Rheology and experimental measurements 22
2-1 Rheology 22
2-2 Rheometers 30
2-3 Reference 34
Chapter 3 Non-Brownian particle gel 35
3-1 Intorduction 35
3-2 Materials and methods 37
3-3 Results and discussions 39
3-4 Reference 52
Chapter 4 Dry nanogranular materials 67
4-1 Intorduction 67
4-2 Results and discussions 69
4-3 Reference 73
Chapter 5 Wet Nanogranular Materials: Colloidal Glass and Gel 80
5-1 Intorduction 80
5-2 Results and discussions 82
5-3 Reference 88
Chapter 6 Conclusion 95

List of Figures
Fig. 1-1 Brownian motion 2
Fig. 1-2 Tyndall effect 3
Fig. 1-3 Electrical double-layer 4
Fig. 1-4 DLVO theory 5
Fig. 1-5 Surfactant structure 6
Fig. 1-6 There are four types of surfactant 7
Fig. 1-7 With increasing concentration, the surfactant molecules modify their thermodynamic states to minimize the free energy. 8
Fig. 1-8 Solar panels (a photovoltaic array) and how a solar panel works. 9
Fig. 1-9 Schematic diagram depicting the principle of the multiwire sawing technique. 11
Fig. 1-10 Cross-section of wire, cutting fluid, and crystal in the cutting zone. 13
Fig. 1-11 Schematic diagram of the sawing channel. 15
Fig. 1-12 Different types of gel structures. 17
Fig. 1-13 Dry and wet granular materials 19
Fig. 2-1 (a) elastic body (b) viscous liquid 24
Fig. 2-2 (a) Newtonian liquid, (b) shear-thinning fluid (c) shear-thickening fluid 27
Fig. 2-3 Rheometer 31
Fig. 2-4 Geometries of measuring systems 32
Fig. 3-1. SEM image of SiC particles with mesh size 10 μm. 54
Fig. 3-2. The time evolution of the interface between clear fluid and sedimenting suspension with mesh size 10 μm for different particle concentrations. 55
Fig. 3-3. The settling velocity of the suspenion with mesh size 10 μm is plotted against the volume fraction. It can be well depicted by Richardson-Zaki correlation. 56
Fig. 3-4. Swelling behavior of the sediment layer of SiC particles in ethylene glycol 57
Fig. 3-5. The dynamic moduli are plotted against the strain at frequency ω=1 rad/sec for the addition of 0.5 wt% C12NH2 surfactant. The linear viscoelasticity strain region is observed. 58
Fig. 3-6. The variation of the dynamic moduli with the oscillation frequency at γ=0.01% for the addition of 0.5 wt% C12NH2 surfactant under different particle concentrations. 59
Fig. 3-7. The comparison between shear-state shear viscosity and complex viscosity indicates the failure of the Cox-Merz rule. 60
Fig. 3-8. The shear stress is plotted against shear rate in the presence of DDA for various particle concentrations. There exists a shear-rate independent regime, corresponding to yield stress. 61
Fig. 3-9. The variation of the yield stress with the particle concentration for the micron-sized suspension with mesh size 10 μm and the nano-sized suspension with the size less than 50 nm. 62
Fig. 3-10. The variation of the yield stress with the particle size for the particle concentration 50 wt%. 63
Fig. 3-11. The influence of surfactant concentration associated with C12NH2 on the yield stress and the gel height (in the inset). 64
Fig. 3-12. Microscopic model of gelling mechanism. The size of the surfactant with a red head and a black tail is exaggerated. 65
Fig. 3-13. The effect of tuning interparticle hydrogen bonds by the addition of HCl or CuCl2 on the flow curves. 66
Fig. 4-1. A sand pile formed by granules of 100 μm can leak through a circular hole with 6 mm diameter on a paper while a sand pile formed by nano-granules of 20 nm are unable to leak. 74
Fig. 4-2. The penetration of a nail. A hole is left for nano-granules while the hole is filled up by gravity driven flow for granules. 75
Fig. 4-3. (Color online) The variation in the volume of nanogranules SiC (20 and 200 nm) with the normal pressure. The inset shows the heights of SiC granules with different particle sizes in test tubes at the same weight after 1 min vibration 76
Fig. 4-4 The apparent viscosity of nano-granules (20 nm) at different volume fraction and of granule (10 μm). The power law index is given. 77
Fig. 4-5 The variation of the dynamic yield stress with the volume fraction for nano-granules with the size 20 nm. The variation of shear stress with shear rate is shown in the inset. 78
Fig. 4-6 The variation of the dynamic moduli ( & ) with the volume fraction for nano-granules (20 nm). The variation in dynamic moduli with the oscillation frequency ω is shown in the inset for different particle sizes. 79
Fig. 5-1. (a) A slurry drop formed by wet SiC granules of size 100 μm. (b) A mouldable material formed by wet SiC nanogranules of size 20 nm. 89
Fig. 5-2. Two types of solvents are considered. The EG drop remains on the surface of SiC granules of 10 μm for a few minutes while n-decane impregnates SiC granules easily. Therefore, EG is solvophobic for SiC and decane is solvophilic. 90
Fig. 5-3. The effect of solvent, including (a) EG, (b) decane, and (c) EG+DDA on the behavior of wet granular and nanogranular materials. DDA is a nonionic surfactant. 91
Fig. 5-4. Wet granular and nanogranular materials atop a small hole. (a) and (b) Liquid-like (flowing down). (c) and (d) Solid-like (motionless). 92
Fig. 5-5. The variation of dynamic moduli and with oscillation frequency ω for SiC granules and nanogranules in different solvents. 93
Fig. 5-6. The variation of the shear stress with the shear rate for nanogranules in various solvents. The yield stress is obtained at low shear rate and the inverted-tube test is shown. 94
[1] A. F. Revuzhenko, Mechanics of Granular Media, New York : Springer-Verlag, Berlin (2006)
[2] B. Cambou, Behaviour of Granular Materials, New York : Springer, Wien (1998)
[3] D. Bideau and A. Hansen, Disorder and Granular Media, North-Holland, Amsterdam New York (1993)
[4] E. A. Hauser, Colloidal Phenomena : an Introduction to the Science of Colloids, Mass : The Technology Press, Cambridge (1954)
[5] F. Yang, J. Kao, ASME J. Electron. Package, 121, 191 (1999)
[6] G. Du, N. Chen, and P. Rossetto, Sci. Technol., 23, 055011 (2008)
[7] H. J. Möller, Adv. Eng. Mater., 7, 501 (2004)
[8] I. Kao, S. Wei and P. Chiang, Proc. Of NSF Design and Manufact. Grantees Conf, 239 (1997)
[9] J. Kijlstra and D. Storch, VEDRAS – Report, BMBF, Germany, 53 (1998)
[10] J. Li, I. Kao and V. Prasad, Proc. ASME – IMECE, Dallas, ASME Press, 439 (1997)
[11] N. Mitarei and F. Nori, Advances in Physics, 55, 1(2006)
[12] R. J. Hunter, Foundations of Colloid Science Oxford University Press, New York, (1992).
[13] R. M. Pashley and M. E. Karaman, Applied Colloid and Surface Chemistry, West Sussex, Chichester (2004)
[14] S. J. Antony, W. Hoyle and Y. Ding, Granular Materials : Fundamentals and Applications, Royal Society of Chemistry, Cambridge (2004)
[15] S. Wei and I. Kao, Trans. Int.J. Vib. Sound, 231, 1383 (2000)
[16] S. Wei and I. Kao, Proc.Manufact. Eng. Div.-IMECE, ASME Press, 813 (1998)
[17] A. A. Collyer, Techniques in Rheological Measurement, Chapman and hall, Chapman & hall, London New York (1993)
[18] A. Chougnet, T. Palermo, A. Audibert and M. Moan, Cem. Concr. Res. 38, 1297 (2008)
[19] A. J. Liu and S. R. Nagel, Jamming and Rheology Constrained Dynamic on Micorscopic and Macroscopic Scales, Taylor and Francis, Francis (2001)
[20] A. S. Lodge, M. Renardy and J. A. Nohel, Viscoelasticity and Rheology, Academic press, Orlando, Fla (1985)
[21] C. Cruz, L. Illoul, F. Chinesta and G. Régnier, Rheol Acta 49, 1141 (2010)
[22] C. Smyth, E. D. Kudryashov and V. Buckin, Colloids Surf. A, 183, 517 (2001)
[23] D. S. Grebenkov, M. P. Ciamarra, M. Nicodemi and A. Coniglio, Phys. Rev. Lett. 100, 078001 (2008)
[24] E. Dickinson, An Introduction to Food Colloids, Oxford University Press, New York, (1992).
[25] F.R. Eirich, Rheology Theory and Applications, Academic press, New York (1956)
[26] G. Romeo, G. Filippone, A. Fernández-Nieves, P. Russo and D. Acierno, Rheol Acta 47, 989 (2008)
[27] H. Asai, A. Masuda and M. Kawaguchi, J. Colloid Interface Sci 328, 180 (2008)
[28] I. Sriram and E. M. Furst, J. Rheol. 53, 357 (2009)
[29] L. Bergström, Colloids Surf., A, 133, 151 (1998)
[30] P. Macro and J. Llorens, J. Eur. Ceram. Soc. 29, 559 (2009)
[31] S. Gaaloul, S. L. Turgeon and M. Corredig, Food Hydrocolloids 23, 1243 (2009)
[32] C. Kim, Y. Liu, A. Kühnle, S. Hess, S. Viereck, T. Danner, L. Mahadevan, and David A. Weitz, Phys. Rev. Lett. 99, 028303 (2007).
[33] C. N. Yuan, Y.-J. Sheng, H.-K. Tsao, Appl. Phys. Lett. 95, 234103 (2009).
[34] C. P. Royall, R. van Roij, A. van Blaaderen, J. Phys.: Condens. Matter, 17, 2315 (2005).
[35] D. Doraiswamy, A. N. Mujumdar, I. Tsao, A. N. Beris, S. C. Danforth, and A. B. Metzkerc, J. Rheol. 35, 647 (1991).
[36] F. J. Liu, K. S. Chou, Ceram. Int. 26, 159 (2000).
[37] F. Yang, J. Kao, ASME J. Electron. Package. 121, 191 (1999).
[38] G. Du, N. Chen, and P. Rossetto, Semicond. Sci. Technol. 23, 055011 (2008).
[39] G. Télez, T. Biben, Eur. Phys. J. E 2, 137 (2000).
[40] H. J. Möler, Adv. Eng. Mater. 6, 501 (2004).
[41] H. M. Wyss, E. V. Tervoort, L. J. Gauckler, J. Am. Ceram. Soc. 88, 2337 (2005).
[42] J. J. Lièor-Santos, C. Kim, P.J. Lu, A. Fernández-Nievesa, and D.A. Weitz, Eur. Phys. J. E. 145, 1 (2009).
[43] J. Y. Xiong, J. Narayanan, X. Y. Liu., T. K. Chong, S. B. Chen, and N. T. S. Chung, J. Phys. Chem. B 109, 5638 (2005).
[44] P. Kirilov, L. Lukyanova, S. Franceschi-Messant, V. Perier, E. Perez, and I. Rico-Lattes, Colloids Surf., A. 328, 1, (2008).
[45] R. Vavrin, J. Kohlbrecher, A. Wilk, M. Ratajczyk, M. P. Lettinga, J. Buitenhuis, and G. Meier, J. Chem. Phys. 130, 154903 (2009).
[46] S. Ikeda, K. Nishinari, J. Agric. Food Chem. 49, 4436 (2001).
[47] S. Koo, J. Ind. Eng. Chem. 15, 45 (2009).
[48] S. Manley, B. Davidovitch, Neil R. Davies, L. Cipelletti, A. E. Bailey, R. J. Christianson, U. Gasser, V. Prasad, P. N. Segre, M. P. Doherty, S. Sankaran, L. Jankovsky, B. Shiley, J. Bowen, J. Eggers, C. Kurta, T. Lorik, and D. A. Weitz, Phys. Rev. Lett. 95, 048302, (2005).
[49] S. Manley, J. M. Skotheim, L. Mahadevan, and D. A. Weitz, Phys. Rev. Lett. 94, 218302 (2005).
[50] S. Romer, F. Scheffold, P. Schurtenberger, Phys. Rev. Lett. 85, 4980 (2000).
[51] S. Ramakrishnan, C. F. Zukoski, Langmuir. 22, 7833 (2006).
[53] W. P. Cox, E. H. Merz, J.Polym. Sci. 28, 619 (1958).
[54] C.-N. Yuan, Y.-J. Sheng, and H.-K. Tsao, Appl. Phys. Lett. 95, 234103 (2009).
[55] E. Brown and H. M. Jaeger, Phys. Rev. Lett. 103, 086001 (2009).
[56] G. Ovarlez, Q. Barral, and P. Coussot, Nature Mater. 9, 115 (2010).
[57] J. Y. Xiong, J. Narayanan, X. Y. Liu, T. K. Chong, S. B. Chen, and N. T. S. Chung, J. Phys. Chem. B 109, 5638 (2005).
[58] K. Nichol, A. Zanin, R. Bastien, E. Wandersman, and M. van Hecke, Phys. Rev. Lett. 104, 078302 (2010).
[59] K. To, P.-Y. Lai, and H. K. Pak, Phys. Rev. Lett. 86, 71 (2001).
[60] L. C. Jia, P. Y. Lai, and C. K. Chan, Phys. Rev. Lett. 83, 3832 (1999).
[61] P. Jop, Y. Forterre, and O. Pouliquen, Nature (London) 441, 727 (2006).
[62] P. Schall and M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2010).
[63] R. J. Hunter, Foundations of Colloid Science Oxford University Press, New York, (1992).
[64] B. Ruzicka, L. Zulian, E. Zaccarelli, R. Angelini, M. Sztucki, A. Moussaïd, and G. Ruocco, Phys. Rev. Lett. 104, 085701 (2010).
[65] B. Ruzicka, L. Zulian, R. Angelini, M. Sztucki, A. Moussaïd, and G. Ruocco, Phys. Rev. E 77, 020402(R) (2008).
[66] C.-N. Yuan, Y.-J. Sheng, and H.-K. Tsao, Appl. Phys. Lett. 95, 234103 (2009).
[67] C.-N. Yuan, Y.-F. Li, Y.-J. Sheng, and H.-K. Tsao, Appl. Phys. Lett. 98, 144102 (2011).
[68] H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004).
[69] J. Y. Xiong, J. Narayanan, X. Y. Liu, T. K. Chong, S. B. Chen, and N. T. S. Chung, J. Phys. Chem. B 109, 5638 (2005).
[70] M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel, A. Sheppard, B. Breidenbach, and S. Herminghaus, Nature Materials, 7, 189 (2008).
[71] N. Mitarai and F. Nori, Adv. Phys. 55, 1 (2006).
[72] P. Shall and M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2010).
[73] R. J. Hunter, Foundations of Colloid Science Oxford University Press, New York, (1992).
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔