(3.238.249.17) 您好!臺灣時間:2021/04/12 12:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:袁嘉男
研究生(外文):Chia-Nan Yuan
論文名稱:碳化矽膠體:凝膠態及玻璃態的形成
論文名稱(外文):Gel and Glass Phase Formed by SiC Colloids
指導教授:曹恒光
指導教授(外文):Heng-Kwong Tsao
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:112
中文關鍵詞:碳化矽膠體凝膠玻璃
外文關鍵詞:SiCColloidGelGlass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
粒狀材料無論是在工業界中或是日常生活上都扮演著舉足輕重的腳色,在此論文中,我們研究了乾粒狀材料(以空氣為介質)以及濕粒狀材料(以溶劑為介質)的特性及行為,甚至添加界劑於其中以改變其性質。我的研究分為三個部份,詳述如下:
  高濃度的碳化矽粒子懸浮液通常應用在切割矽晶圓的切削液中,因此,如何使其穩定懸浮乃是一重要的議題。微米級的碳化矽粒子在乙二醇溶劑中非常容易沉降,即使粒子的聚集並未發生。然而,藉由添加正十二胺此種界劑將會形成粒子型的凝膠而使粒子穩定懸浮。透過流變性質的量測,我們發現儲存模數約為損失模數的三倍,此外,我們也可以觀察到由粒子間的作用力所造成的網狀結構,此結構的強度可由降伏應力來表示。界劑濃度對降伏應力的影響可區分為兩個區域:在較低的界劑濃度時,凝膠高度與降伏應力都會隨著界劑濃度上升而增加,然而當界劑濃度超過一特定值之後,凝膠高度與降伏應力則隨界劑濃度上升而下降。形成粒子型凝膠的機制如下:因正十二胺的尾鏈並不喜歡存在於溶劑,界劑分子會傾向利用尾鏈接在粒子的表面上,而粒子間的引力會透過吸附在不同粒子上界劑頭基的分子間氫鍵所構成。添加一般典型的界劑如SDS並無法形成粒子型凝膠,此外,在溶劑中添加鹽酸使其酸化也會破壞粒子型凝膠的生成。
  粒狀材料包含許多肉眼可見的顆粒,其廣泛應用於許多領域之中且流動行為相當重要。然而,奈米粒狀材料的流動行為及特性則大大地迥異於一般的粒狀材料,奈米粒狀材料可在空氣中形成體積分率很低(5%)的粒子型凝膠,且其並不會受重力驅使而導致流動。我們發現奈米粒狀材料擁有很高的壓縮度,與氣體相似;但由於高的降伏應力及黏度,奈米粒狀材料也十分不易流動。此凝膠的形成是由於粒子間的凡得瓦耳作用力,此作用力可支撐奈米粒子的重量且抵抗剪切應力的破壞。
  由於毛細作用力的影響,部分濕潤的粒狀材料大多具有可朔性。然而,我們發現完全濕潤的奈米粒狀材料有同樣具有可朔性,此性質是藉由凡得瓦耳引力所造成,此外,根據所使用溶劑的不同,奈米粒狀材料會形成所謂的凝膠態或玻璃態。當溶劑所造成的引力主導時,我們發現奈米粒狀材料在溶劑中會形成相分離,此狀態就是所謂的粒子凝膠狀態;相反地,當圍籠效應主導時,我們則可得到玻璃狀態。透過界劑的添加,我們也可使原本應形成玻璃狀態的系統轉換成凝膠狀態。
Granular material plays an important role in our daily life as well as in engineering and science. In my study, I investigate the behaviors and properties of dry granular materials and wet granular materials. Furthermore, the properties of granular materials can be changed by addition of the surfactants. There are three main topic in my paper, described as follow:
  The concentrated suspension of silicon carbide (SiC) particles are often used as cutting fluids for Si-wafer. How to maintain suspended states is thus essential. The suspension of micron-sized SiC particles in ethylene glycol (EG) is liable to sedimentation although the particles do not aggregate. By addition of surfactant dodecylamine, however, we show that the suspension can form particle gel. According to rheological measurements, the ratio of storage to loss modulus is about 3, indicating a weak gel. Moreover, the observation of dynamic yield stress reveals the existence of the structure caused by the particle-particle attraction. The influence of surfactant concentration on the gel properties can be classified into two regimes. At low concentration, both gel height and yield stress grow with increasing surfactant concentration. However, as the concentration exceeds a certain value, they decline with increasing surfactant concentration. A gelling mechanism has been proposed and examined. Since the tails of alkyl amines are solvophobic, the surfactant molecules in EG prefer to stay on the particle with the tail orienting toward the surface. The attraction between particles originates from hydrogen bonds formed between surfactant molecules adsorbed on different particles. Thus gelation fails when typical surfactants such as sodium dodecyl sulfate are employed. Acidification by HCl also hinders the gel formation by alkyl amine.
Granular materials consisting of macroscopic grains have commercial applications and their flow behavior plays key role in geophysics. However, flow characteristics of nano-granules differ significantly from those of granules. The latter can form low-volume fraction (5%) particle gels in air and is difficult to exhibit gravity-driven granular flow. It is found that although dry nano-granules possess a high compressibility, close to gases, they are less susceptible to flow than granules due to high yield stress and viscosity. Such differences can be attributed to van der Waals attractions, which support the weight of nanoparticles to form aerogels and resist shearing deformation. The rheology of granular materials is relevant to many areas of nature and industry, from mountain avalanches and mud slides, to grain transport and storage.
Partially wet granular medium is a mouldable material due to capillary cohesion and its behavior plays key roles in geophysics. However, completely wet nanogranules may also demonstrate mouldable properties via van der Waals attraction and they exhibit colloidal glass or gel characteristics, depending on the solvent. As solvent-enhanced attractions prevail, phase separation is observed and nanogranular gel can be obtained. In contrast, as cage effects dominate, the stable slurry is seen and the nanogranular glass can be prepared. Upon surfactant addition, however, the arrested glass state changes into colloidal gel due to the formation of hydrogen bonds between nanogranules.
Contents
Abstract I
Contents III
List of Figures V
Chapter 1 Introduction 1
1-1 Colloids 1
1-2 Surfactants 6
1-3 Cutting liquids 9
1-4 Gels 16
1-5 Granular media 18
1-6 Reference 21
Chapter 2 Rheology and experimental measurements 22
2-1 Rheology 22
2-2 Rheometers 30
2-3 Reference 34
Chapter 3 Non-Brownian particle gel 35
3-1 Intorduction 35
3-2 Materials and methods 37
3-3 Results and discussions 39
3-4 Reference 52
Chapter 4 Dry nanogranular materials 67
4-1 Intorduction 67
4-2 Results and discussions 69
4-3 Reference 73
Chapter 5 Wet Nanogranular Materials: Colloidal Glass and Gel 80
5-1 Intorduction 80
5-2 Results and discussions 82
5-3 Reference 88
Chapter 6 Conclusion 95



























List of Figures
Fig. 1-1 Brownian motion 2
Fig. 1-2 Tyndall effect 3
Fig. 1-3 Electrical double-layer 4
Fig. 1-4 DLVO theory 5
Fig. 1-5 Surfactant structure 6
Fig. 1-6 There are four types of surfactant 7
Fig. 1-7 With increasing concentration, the surfactant molecules modify their thermodynamic states to minimize the free energy. 8
Fig. 1-8 Solar panels (a photovoltaic array) and how a solar panel works. 9
Fig. 1-9 Schematic diagram depicting the principle of the multiwire sawing technique. 11
Fig. 1-10 Cross-section of wire, cutting fluid, and crystal in the cutting zone. 13
Fig. 1-11 Schematic diagram of the sawing channel. 15
Fig. 1-12 Different types of gel structures. 17
Fig. 1-13 Dry and wet granular materials 19
Fig. 2-1 (a) elastic body (b) viscous liquid 24
Fig. 2-2 (a) Newtonian liquid, (b) shear-thinning fluid (c) shear-thickening fluid 27
Fig. 2-3 Rheometer 31
Fig. 2-4 Geometries of measuring systems 32
Fig. 3-1. SEM image of SiC particles with mesh size 10 μm. 54
Fig. 3-2. The time evolution of the interface between clear fluid and sedimenting suspension with mesh size 10 μm for different particle concentrations. 55
Fig. 3-3. The settling velocity of the suspenion with mesh size 10 μm is plotted against the volume fraction. It can be well depicted by Richardson-Zaki correlation. 56
Fig. 3-4. Swelling behavior of the sediment layer of SiC particles in ethylene glycol 57
Fig. 3-5. The dynamic moduli are plotted against the strain at frequency ω=1 rad/sec for the addition of 0.5 wt% C12NH2 surfactant. The linear viscoelasticity strain region is observed. 58
Fig. 3-6. The variation of the dynamic moduli with the oscillation frequency at γ=0.01% for the addition of 0.5 wt% C12NH2 surfactant under different particle concentrations. 59
Fig. 3-7. The comparison between shear-state shear viscosity and complex viscosity indicates the failure of the Cox-Merz rule. 60
Fig. 3-8. The shear stress is plotted against shear rate in the presence of DDA for various particle concentrations. There exists a shear-rate independent regime, corresponding to yield stress. 61
Fig. 3-9. The variation of the yield stress with the particle concentration for the micron-sized suspension with mesh size 10 μm and the nano-sized suspension with the size less than 50 nm. 62
Fig. 3-10. The variation of the yield stress with the particle size for the particle concentration 50 wt%. 63
Fig. 3-11. The influence of surfactant concentration associated with C12NH2 on the yield stress and the gel height (in the inset). 64
Fig. 3-12. Microscopic model of gelling mechanism. The size of the surfactant with a red head and a black tail is exaggerated. 65
Fig. 3-13. The effect of tuning interparticle hydrogen bonds by the addition of HCl or CuCl2 on the flow curves. 66
Fig. 4-1. A sand pile formed by granules of 100 μm can leak through a circular hole with 6 mm diameter on a paper while a sand pile formed by nano-granules of 20 nm are unable to leak. 74
Fig. 4-2. The penetration of a nail. A hole is left for nano-granules while the hole is filled up by gravity driven flow for granules. 75
Fig. 4-3. (Color online) The variation in the volume of nanogranules SiC (20 and 200 nm) with the normal pressure. The inset shows the heights of SiC granules with different particle sizes in test tubes at the same weight after 1 min vibration 76
Fig. 4-4 The apparent viscosity of nano-granules (20 nm) at different volume fraction and of granule (10 μm). The power law index is given. 77
Fig. 4-5 The variation of the dynamic yield stress with the volume fraction for nano-granules with the size 20 nm. The variation of shear stress with shear rate is shown in the inset. 78
Fig. 4-6 The variation of the dynamic moduli ( & ) with the volume fraction for nano-granules (20 nm). The variation in dynamic moduli with the oscillation frequency ω is shown in the inset for different particle sizes. 79
Fig. 5-1. (a) A slurry drop formed by wet SiC granules of size 100 μm. (b) A mouldable material formed by wet SiC nanogranules of size 20 nm. 89
Fig. 5-2. Two types of solvents are considered. The EG drop remains on the surface of SiC granules of 10 μm for a few minutes while n-decane impregnates SiC granules easily. Therefore, EG is solvophobic for SiC and decane is solvophilic. 90
Fig. 5-3. The effect of solvent, including (a) EG, (b) decane, and (c) EG+DDA on the behavior of wet granular and nanogranular materials. DDA is a nonionic surfactant. 91
Fig. 5-4. Wet granular and nanogranular materials atop a small hole. (a) and (b) Liquid-like (flowing down). (c) and (d) Solid-like (motionless). 92
Fig. 5-5. The variation of dynamic moduli and with oscillation frequency ω for SiC granules and nanogranules in different solvents. 93
Fig. 5-6. The variation of the shear stress with the shear rate for nanogranules in various solvents. The yield stress is obtained at low shear rate and the inverted-tube test is shown. 94
[1] A. F. Revuzhenko, Mechanics of Granular Media, New York : Springer-Verlag, Berlin (2006)
[2] B. Cambou, Behaviour of Granular Materials, New York : Springer, Wien (1998)
[3] D. Bideau and A. Hansen, Disorder and Granular Media, North-Holland, Amsterdam New York (1993)
[4] E. A. Hauser, Colloidal Phenomena : an Introduction to the Science of Colloids, Mass : The Technology Press, Cambridge (1954)
[5] F. Yang, J. Kao, ASME J. Electron. Package, 121, 191 (1999)
[6] G. Du, N. Chen, and P. Rossetto, Sci. Technol., 23, 055011 (2008)
[7] H. J. Möller, Adv. Eng. Mater., 7, 501 (2004)
[8] I. Kao, S. Wei and P. Chiang, Proc. Of NSF Design and Manufact. Grantees Conf, 239 (1997)
[9] J. Kijlstra and D. Storch, VEDRAS – Report, BMBF, Germany, 53 (1998)
[10] J. Li, I. Kao and V. Prasad, Proc. ASME – IMECE, Dallas, ASME Press, 439 (1997)
[11] N. Mitarei and F. Nori, Advances in Physics, 55, 1(2006)
[12] R. J. Hunter, Foundations of Colloid Science Oxford University Press, New York, (1992).
[13] R. M. Pashley and M. E. Karaman, Applied Colloid and Surface Chemistry, West Sussex, Chichester (2004)
[14] S. J. Antony, W. Hoyle and Y. Ding, Granular Materials : Fundamentals and Applications, Royal Society of Chemistry, Cambridge (2004)
[15] S. Wei and I. Kao, Trans. Int.J. Vib. Sound, 231, 1383 (2000)
[16] S. Wei and I. Kao, Proc.Manufact. Eng. Div.-IMECE, ASME Press, 813 (1998)
[17] A. A. Collyer, Techniques in Rheological Measurement, Chapman and hall, Chapman & hall, London New York (1993)
[18] A. Chougnet, T. Palermo, A. Audibert and M. Moan, Cem. Concr. Res. 38, 1297 (2008)
[19] A. J. Liu and S. R. Nagel, Jamming and Rheology Constrained Dynamic on Micorscopic and Macroscopic Scales, Taylor and Francis, Francis (2001)
[20] A. S. Lodge, M. Renardy and J. A. Nohel, Viscoelasticity and Rheology, Academic press, Orlando, Fla (1985)
[21] C. Cruz, L. Illoul, F. Chinesta and G. Régnier, Rheol Acta 49, 1141 (2010)
[22] C. Smyth, E. D. Kudryashov and V. Buckin, Colloids Surf. A, 183, 517 (2001)
[23] D. S. Grebenkov, M. P. Ciamarra, M. Nicodemi and A. Coniglio, Phys. Rev. Lett. 100, 078001 (2008)
[24] E. Dickinson, An Introduction to Food Colloids, Oxford University Press, New York, (1992).
[25] F.R. Eirich, Rheology Theory and Applications, Academic press, New York (1956)
[26] G. Romeo, G. Filippone, A. Fernández-Nieves, P. Russo and D. Acierno, Rheol Acta 47, 989 (2008)
[27] H. Asai, A. Masuda and M. Kawaguchi, J. Colloid Interface Sci 328, 180 (2008)
[28] I. Sriram and E. M. Furst, J. Rheol. 53, 357 (2009)
[29] L. Bergström, Colloids Surf., A, 133, 151 (1998)
[30] P. Macro and J. Llorens, J. Eur. Ceram. Soc. 29, 559 (2009)
[31] S. Gaaloul, S. L. Turgeon and M. Corredig, Food Hydrocolloids 23, 1243 (2009)
[32] C. Kim, Y. Liu, A. Kühnle, S. Hess, S. Viereck, T. Danner, L. Mahadevan, and David A. Weitz, Phys. Rev. Lett. 99, 028303 (2007).
[33] C. N. Yuan, Y.-J. Sheng, H.-K. Tsao, Appl. Phys. Lett. 95, 234103 (2009).
[34] C. P. Royall, R. van Roij, A. van Blaaderen, J. Phys.: Condens. Matter, 17, 2315 (2005).
[35] D. Doraiswamy, A. N. Mujumdar, I. Tsao, A. N. Beris, S. C. Danforth, and A. B. Metzkerc, J. Rheol. 35, 647 (1991).
[36] F. J. Liu, K. S. Chou, Ceram. Int. 26, 159 (2000).
[37] F. Yang, J. Kao, ASME J. Electron. Package. 121, 191 (1999).
[38] G. Du, N. Chen, and P. Rossetto, Semicond. Sci. Technol. 23, 055011 (2008).
[39] G. Télez, T. Biben, Eur. Phys. J. E 2, 137 (2000).
[40] H. J. Möler, Adv. Eng. Mater. 6, 501 (2004).
[41] H. M. Wyss, E. V. Tervoort, L. J. Gauckler, J. Am. Ceram. Soc. 88, 2337 (2005).
[42] J. J. Lièor-Santos, C. Kim, P.J. Lu, A. Fernández-Nievesa, and D.A. Weitz, Eur. Phys. J. E. 145, 1 (2009).
[43] J. Y. Xiong, J. Narayanan, X. Y. Liu., T. K. Chong, S. B. Chen, and N. T. S. Chung, J. Phys. Chem. B 109, 5638 (2005).
[44] P. Kirilov, L. Lukyanova, S. Franceschi-Messant, V. Perier, E. Perez, and I. Rico-Lattes, Colloids Surf., A. 328, 1, (2008).
[45] R. Vavrin, J. Kohlbrecher, A. Wilk, M. Ratajczyk, M. P. Lettinga, J. Buitenhuis, and G. Meier, J. Chem. Phys. 130, 154903 (2009).
[46] S. Ikeda, K. Nishinari, J. Agric. Food Chem. 49, 4436 (2001).
[47] S. Koo, J. Ind. Eng. Chem. 15, 45 (2009).
[48] S. Manley, B. Davidovitch, Neil R. Davies, L. Cipelletti, A. E. Bailey, R. J. Christianson, U. Gasser, V. Prasad, P. N. Segre, M. P. Doherty, S. Sankaran, L. Jankovsky, B. Shiley, J. Bowen, J. Eggers, C. Kurta, T. Lorik, and D. A. Weitz, Phys. Rev. Lett. 95, 048302, (2005).
[49] S. Manley, J. M. Skotheim, L. Mahadevan, and D. A. Weitz, Phys. Rev. Lett. 94, 218302 (2005).
[50] S. Romer, F. Scheffold, P. Schurtenberger, Phys. Rev. Lett. 85, 4980 (2000).
[51] S. Ramakrishnan, C. F. Zukoski, Langmuir. 22, 7833 (2006).
[53] W. P. Cox, E. H. Merz, J.Polym. Sci. 28, 619 (1958).
[54] C.-N. Yuan, Y.-J. Sheng, and H.-K. Tsao, Appl. Phys. Lett. 95, 234103 (2009).
[55] E. Brown and H. M. Jaeger, Phys. Rev. Lett. 103, 086001 (2009).
[56] G. Ovarlez, Q. Barral, and P. Coussot, Nature Mater. 9, 115 (2010).
[57] J. Y. Xiong, J. Narayanan, X. Y. Liu, T. K. Chong, S. B. Chen, and N. T. S. Chung, J. Phys. Chem. B 109, 5638 (2005).
[58] K. Nichol, A. Zanin, R. Bastien, E. Wandersman, and M. van Hecke, Phys. Rev. Lett. 104, 078302 (2010).
[59] K. To, P.-Y. Lai, and H. K. Pak, Phys. Rev. Lett. 86, 71 (2001).
[60] L. C. Jia, P. Y. Lai, and C. K. Chan, Phys. Rev. Lett. 83, 3832 (1999).
[61] P. Jop, Y. Forterre, and O. Pouliquen, Nature (London) 441, 727 (2006).
[62] P. Schall and M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2010).
[63] R. J. Hunter, Foundations of Colloid Science Oxford University Press, New York, (1992).
[64] B. Ruzicka, L. Zulian, E. Zaccarelli, R. Angelini, M. Sztucki, A. Moussaïd, and G. Ruocco, Phys. Rev. Lett. 104, 085701 (2010).
[65] B. Ruzicka, L. Zulian, R. Angelini, M. Sztucki, A. Moussaïd, and G. Ruocco, Phys. Rev. E 77, 020402(R) (2008).
[66] C.-N. Yuan, Y.-J. Sheng, and H.-K. Tsao, Appl. Phys. Lett. 95, 234103 (2009).
[67] C.-N. Yuan, Y.-F. Li, Y.-J. Sheng, and H.-K. Tsao, Appl. Phys. Lett. 98, 144102 (2011).
[68] H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004).
[69] J. Y. Xiong, J. Narayanan, X. Y. Liu, T. K. Chong, S. B. Chen, and N. T. S. Chung, J. Phys. Chem. B 109, 5638 (2005).
[70] M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel, A. Sheppard, B. Breidenbach, and S. Herminghaus, Nature Materials, 7, 189 (2008).
[71] N. Mitarai and F. Nori, Adv. Phys. 55, 1 (2006).
[72] P. Shall and M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2010).
[73] R. J. Hunter, Foundations of Colloid Science Oxford University Press, New York, (1992).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔