(3.236.100.6) 您好!臺灣時間:2021/04/24 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳文雄
研究生(外文):Wun-Syong Chen
論文名稱:稻殼灰分擔載銅觸媒應用於甲醇部份氧化產氫之研究
指導教授:張奉文
指導教授(外文):Feg-Wen Chang
學位類別:博士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:156
中文關鍵詞:銅觸媒稻殼灰分擔體產氫技術甲醇部份氧化
外文關鍵詞:Copper catalystRice husk ash supportMethanol partial oxidationHydrogen
相關次數:
  • 被引用被引用:1
  • 點閱點閱:182
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以沈澱固著法製備稻殼灰分擔體銅觸媒(Cu/RHA)以及添加氧化鋅的稻殼灰分擔體銅觸媒(Cu/ZnO/RHA)進行甲醇部份氧化反應(POM)產製氫氣,分別針對不同銅載量、氧化鋅添加量、pH值、煅燒溫度、O2/CH3OH進料比例及反應溫度等參數進行討論,以得最佳製備與反應條件,最後再與最佳條件製備的商用二氧化矽擔體銅觸媒進行比較,以了解稻殼灰分取代商用二氧化矽作為擔體的可行性。研究中利用感應耦合電漿原子發射光譜儀(ICP-AES)、熱重分析儀(TGA)、X-ray繞射分析儀(XRD)、程式升溫還原(TPR)、N2O分解吸附(dissociative adsorption of nitrous oxide)與X射線光電子能譜儀(XPS)等分析技術,對觸媒進行物性分析鑑定;以甲醇部份氧化反應探討各項操作變因對於甲醇轉化率、氫氣選擇率及一氧化碳選擇率之影響,並由實驗結果評估稻殼灰分擔體銅觸媒應用在POM反應產氫的可行性。
  由實驗結果得知,稻殼灰分為一高純度的二氧化矽。隨著銅載量增加,擔載於觸媒上之銅鹽類可完全均勻分散在擔體上,形成一種類孔雀石結構,但銅晶粒大小會隨載量增加而變大,因此需要較高的還原溫度;過高的煅燒溫度,會使觸媒有些許的燒結現象,使銅金屬表面積下降。10.2 wt.% Cu/RHA觸媒有最佳的銅金屬表面積、分散度,因此反應活性最佳。進料比O2/CH3OH=0.3時,有較好的產物分布,同時具有較高的甲醇轉化率、氫氣選擇率,以及較低的一氧化碳選擇率。523 K為最佳的反應溫度,因其同時具有高甲醇轉化率與氫氣選擇率,卻不會有大量的一氧化碳產生。由XPS結果可證明,Cu0為POM反應的活性點,因此若欲得到較好的催化活性,觸媒需要有較大的銅金屬表面積。
  由XRD圖譜與N2O分解吸附結果得知,添加過多的氧化鋅,會降低銅金屬表面積,使得分散度降低,銅粒徑變大。利用pH=8製備的觸媒有最大的銅金屬表面積,與最好的分散度。POM測試的活性結果發現,添加1 wt.%氧化鋅、pH=8、煅燒溫度673 K的觸媒有最好的催化活性,對比物性結果發現,催化活性與銅金屬的表面積相關。反應溫度於523 K時觸媒有最好的活性表現,過高的溫度會導致副產物增加。不論有無添加氧化鋅促進劑,稻殼灰分擔體銅觸媒的反應活性皆比商用二氧化矽觸媒佳,因其孔洞特性為單一孔洞結構,而商用二氧化矽則為聯結孔洞型態,聯結型孔洞迂迴曲折,容易使銅金屬晶粒在熱活化階段或催化反應時,將孔洞出口阻塞,因此,商用二氧化矽擔體觸媒在POM反應過程中,觸媒表面活性點逐漸減少,使得失活速率加快。因此利用稻殼灰分取代商用二氧化矽是可行的。
Part I:Cu/RHA catalysts
  Copper catalysts supported on rice husk ash (Cu/RHA) were tested for partial oxidation of methanol (POM) to produce H2. The catalysts were prepared by deposition-precipitation and characterized by ICP-AES, TGA, XRD, TPR, XPS and N2O titration techniques. The Cu/RHA catalyst with 10.2 wt. % Cu loading and under 673 K calcination has higher copper dispersion and smaller Cu particle size. This catalyst exhibits higher activity and selectivity for POM to produce H2. The partial pressure of O2 plays an important role to determine the product distribution. Catalytic activity of the catalyst at different reaction temperatures shows that CH3OH conversion, H2 selectivity and CO selectivity increase with rise in temperature. At different temperatures along with POM, several reactions such as methanol combustion, steam reforming of methanol, methanol decomposition, water gas shift and oxidation of CO and H2 might be involved. Comparison of catalytic activity of Cu/RHA and Cu/SiO2 catalysts demonstrates that Cu/SiO2 catalysts deactivate with time with faster rate and have higher CO selectivity. This proves that Cu/RHA catalysts have good thermal stability and selectivity for POM to produce H2.

Part II:Cu/ZnO/RHA catalysts
  ZnO-promoted copper catalysts supported on rice husk ash (Cu/ZnO/RHA) have been tested for partial oxidation of methanol (POM) to produce hydrogen. The catalyst was prepared by deposition-precipitation method and characterized by XRD, TPR, and N2O titration techniques. Detail study on the catalytic activity of the Cu/ZnO/RHA catalysts was performed to optimize the amount of ZnO promoter, pH, calcination temperature and reaction temperature. The results showed that with appropriate amount of ZnO promoter, CH3OH conversion increased significantly and the undesired by–product, CO was reduced. The improved activity and selectivity is due to the enhanced copper surface area and copper dispersion by the ZnO additon. The catalysts prepared with 1 wt.% ZnO promoter, pH 8, and calcined at 673 K showed the superior catalytic activity because of its high copper surface area under these experimental conditions. The CH3OH conversion and H2 selectivity are increased from 40% to 91.2% and 80.1% to 99.2%, respectively, when rising the temperature from 473 to 573 K. Beyond 523 K, the CO selectivity was significant. Comparison between Cu/ZnO/RHA and Cu/ZnO/SiO2 catalysts proves that Cu/ZnO/RHA is an active catalyst with good stability compared to the silica supported catalyst.
中文摘要i
英文摘要iii
誌謝vi
目錄vii
圖目錄xii
表目錄xix
第一章 緒論1
1-1前言1
1-2燃料電池介紹2
1-2-1燃料電池發展簡史2
1-2-2燃料電池的原理與特性3
1-2-3燃料電池的種類 5
1-3產氫技術5
1-4甲醇產氫7
1-5稻殼灰分介紹9
1-6擔體銅觸媒的應用9
1-7研究內容與論文架構11
第二章 文獻回顧13
2-1稻殼的組成與性質 13
2-2稻殼灰分擔體的製備13
2-2-1稻殼的酸洗16
2-2-2稻殼的熱解17
2-3稻殼灰分擔體觸媒的應用18
2-4銅觸媒的應用18
2-5銅觸媒的製備方法 20
2-6煅燒程序23
2-7銅觸媒的活性點24
2-8還原程序24
2-9擔體作用25
第三章 實驗方法與裝置27
3-1稻殼灰分擔體的製備27
3-1-1水洗程序27
3-1-2酸洗程序28
3-1-3熱解程序30
3-1-4碳燒程序30
3-2擔載銅觸媒的製備 32
3-2-1 Cu/RHA的製備32
3-2-2 Cu/ZnO/RHA的製備36
3-3擔體銅觸媒的鑑定分析37
3-3-1感應耦合電漿原子放射光譜儀(ICP-AES)37
3-3-2熱重分析 (TGA) 38
3-3-3 X-ray繞射分析儀(XRD)39
3-3-4程式升溫還原(TPR)41
3-3-5銅金屬表面積的量測45
3-3-6 X射線光電子分析(XPS)48
3-4觸媒活性測試---甲醇部份氧化產氫反應51
3-5實驗流程與操作變數53
3-6數據計算與處理55
3-6-1銅觸媒理論載量的定義與計算55
3-6-2甲醇轉化率的計算55
3-6-3氫氣選擇率及一氧化碳選擇率的計算61
3-7藥品、氣體及儀器設備63
3-7-1藥品63
3-7-2氣體63
3-7-3儀器設備64
第四章 Cu/RHA觸媒的結果與討論66
4-1稻殼灰分組成分析 66
4-2 Cu/RHA觸媒的特性分析69
4-2-1觸媒上各成份的含量分析69
4-2-2熱重分析(TGA)71
4-2-3 X-射線繞射分析(XRD)73
4-2-4程式升溫還原(TPR)77
4-2-5觸媒表面積結果81
4-2-6 X射線光電子能譜分析(XPS)85
4-3 Cu/RHA觸媒在甲醇部份氧化反應的活性測試87
4-3-1銅載量對觸媒活性的影響88
4-3-2煅燒溫度對觸媒活性的影響93
4-3-3進料O2/CH3OH比例對於觸媒活性的影響97
4-3-4反應溫度對於觸媒活性的影響102
4-3-5 Cu/RHA與Cu/SiO2觸媒的活性比較106
第五章 Cu/ZnO/RHA觸媒的結果與討論111
5-1 Cu/ZnO/RHA觸媒的特性分析111
5-1-1觸媒上各成份的含量分析111
5-1-2 X-射線繞射分析(XRD)113
5-1-3程式升溫還原分析(TPR)120
5-1-4觸媒表面積分析124
5-2 Cu/ZnO/RHA觸媒在甲醇部份氧化反應的活性測試130
5-2-1 ZnO促進劑含量對觸媒活性的影響132
5-2-2製備pH值對觸媒活性的影響134
5-2-3煅燒溫度對觸媒活性的影響136
5-2-4反應溫度對觸媒活性的影響136
5-2-5 Cu/ZnO/RHA與Cu/ZnO/SiO2觸媒的活性比較140
第六章 結論144
參考文獻149
Adam, F., K. Kandasamy, S. Balakrishnan, “Iron incorporated heterogeneous catalyst from rice husk ash”, Journal of Colloid and Interface Science, 304, 137, (2006).

Adam, F., P. Retnam, A. Iqbal, “The complete conversion of cyclohexane into cyclohexanol and cyclohexanone by a simple silica-chromium heterogeneous catalyst”, Applied Catalysis A: General, 357, 93, (2009).

Agrell, J. K. Hasselbo, K. Jansson, S.G. Järås, M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 211, 239, (2001).

Agrell, J., H. Birgersson, M. Boutonnet, I. Melián-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, Journal of Catalysis, 219, 389, (2003a).

Agrell, J., M. Boutonnet, J.L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways”, Applied Catalysis A: General, 253, 213, (2003b).

Agrell, J., M. Boutonnet, I. Melián-Cabrera, J.L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part I. Catalyst preparation and characterization”, Applied Catalysis A: General, 253, 201, (2003c).

Ahmed, A.E., F. Adam, “Indium incorporated silica from rice husk and its catalytic activity”, Microporous and Mesoporous Materials, 103, 284, (2007).

Ahmed, A.E., F. Adam, “The benzylation of benzene using aluminium, gallium and iron incorporated silica from rice husk ash”, Microporous and Mesoporous Materials, 118, 35, (2009).



Alejo, L., R. Lago, M.A. Peña, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A: General, 162, 281, (1997).

Amick, J.A., “Purification of rice hulls as a source of solar grade silicon for solar-cells”, Journal of electrochemical Society, 129, 864, (1982).

Bhagiyalakshmi, M., L.J. Yun, R. Anuradha, H.T. Jang, “Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting”, Journal of Hazardous Materials, 175, 928, (2010).

Bockris, J.O’M., “Hydrogen economy in the future”, International Journal of Hydrogen Energy, 24, 1, (1999).

Bond, G.C., S.N. Namijo, “An improved procedure for estimating the metal surface area of supported copper catalysts”, Journal of Catalysis, 118, 507 (1989).

Burton, R., R.C. Richard, S. Alpert, “Municipal solid waste prolysis”, AICHE System, 70, 116, (1974).

Carter, J.L., J.A. Cusumano, J.H. Sinfelt, “Catalysis over supported metals. V. The effect of crystallite size on the catalytic activity of nickel”, Journal of Physical Chemistry, 70, 2257, (1966).

Cesar, D.V., C.A. Perez, V.M.M. Salim, M. Schmal, “Stability and selectivity of bimetallic Cu-Co/SiO2 catalysts for cyclohexanol dehydrogenation”, Applied Catalysis A: General, 176, 205, (1999).

Chakraverty, A., P. Mishra, H.D. Banerjee, “Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica”, Journal of Materials Science, 23, 21, (1988).

Chang, F.-W., H.-C. Yang, L.S. Roselin, W.-Y. Kuo, “Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange”, Applied Catalysis A: General, 304, 30, (2006).

Chang, F.-W., L.S. Roselin, T.-C. Ou, “Hydrogen production by partial oxidation of methanol over bimetallic Au–Ru/Fe2O3 catalysts”, Applied Catalysis A: General, 334, 147, (2008).
Chang, F.-W., M.-S. Kuo, M.-T. Tsay, M.-C. Hsieh, “Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation”, Applied Catalysis A: General, 247, 309, (2003).

Chang, F.-W., M.-T. Tsay, M.-S. Kuo, C.-M. Yang, “Characterization of nickel catalysts on RHA-Al2O3 composite oxides prepared by ion exchange”, Applied Catalysis A: General, 226, 213, (2002a).

Chang, F.-W., M.-T. Tsay, M.-S. Kuo, “Effect of thermal treatments on catalyst reducibility and activity in nickel supported on RHA–Al2O3 systems”, Thermochimica Acta, 386, 161, (2002b).

Chang, F.-W., M.-T. Tsay, S.-P. Liang, “Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange”, Applied Catalysis A: General, 209, 217, (2001).

Chang, F.-W., S.-C. Lai, L.S. Roselin, “Hydrogen production by partial oxidation of methanol over ZnO-promoted Au/Al2O3 catalysts”, Journal of Molecular Catalysis A: Chemical, 282, 129, (2008).

Chang, F.-W., T.-C. Ou, L.S. Roselin, W.-S. Chen, S.-C. Lai, H.-M. Wu, “Production of hydrogen by partial oxidation of methanol over bimetallic Au–Cu/TiO2–Fe2O3 catalysts”, Journal of Molecular Catalysis A: Chemical, 313, 55, (2009).

Chang, F.-W., T.-J. Hsiao, J.-D. Shih, “Hydrogenation of CO2 over a rice husk ash supported catalyst prepared by deposition-precipitation”, Industrial and Engineering Chemistry Research, 37, 3838, (1998).

Chang, F.-W., T.-J. Hsiao, S.-W. Chung, J.-J. Lo, “Nickel supported on rice husk ash-activity and selectivity in CO2 methanation”, Applied Catalysis A: General, 164, 225, (1997).

Chang, F.-W., W.-Y. Kuo, H.-C. Yang, “Preparation of Cr2O3-promoted copper catalysts on rice husk ash by incipient wetness impregnation”, Applied Catalysis A: General, 288, 53, (2005).

Chang, F.-W., W.-Y. Kuo, K.-C. Lee, “Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation”, Applied Catalysis A: General, 246, 253, (2003).
Chen, J.M., F.-W. Chang, “The chlorination kinetics of rice husk”, Industrial and Engineering Chemistry Research, 30, 2214, (1991).

Chen, W.-S., F.-W. Chang, L.S. Roselin, T.-C. Ou, S.-C. Lai, “Partial oxidation of methanol over copper catalysts supported on rice husk ash”, Journal of Molecular Catalysis A: Chemical, 318, 36, (2010).

Chen, H.M., J.M. White, J.G. Ekerdt, “Electronic effect of supports on copper catalysts”, J. Catal., 99, 293, (1986).

Cubeiro, M.L., J.L.G. Fierro, “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Journal of Catalysis, 179, 150, (1998).

Eswaramoorthi, I., V. Sundaramurthy, A.K. Dalai, “Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts”, Applied Catalysis A: General, 313, 22, (2006).

Fisher, I.A., A.T. Bell, “A mechanistic study of methanol decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2”, Journal of Catalysis, 184, 357, (1999).

Franckerts J., G.F. Froment, “Kinetic study of the dehydrogenation of ethanol”, Chemical Engineering Science, 19, 807, (1964).

Fujitani, T., J. Nakamura, “The chemical modification seen in the Cu/ZnO methanol synthesis catalysts”, Applied Catalysis A: General, 191, 111, (2000).

Geus, J.W., “Production and thermal pretreatment of supported catalysts”, Preparation of CatalystsⅢ-Scientific Bases for the Preparation of Heterogeneous Catalysts, 16, 1, (1983).

Gil, A., A. Diaz, L.M. Gandia, M. Montes, “Influence of the preparation method and the nature of the support on the stability of nickel catalysts”, Applied Catalysis A: General, 109, 167, (1994).

Guerreiro, E.D., O.F. Gorriz, G. Larsen, L.A. Arrúa, “Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation a comparative study using different preparation techniques”, Applied Catalysis A: General, 204, 33, (2000).
Houston, D.F., “Rice hulls”, rice chemistry and technology Chapter 12, American of Association of Cereal Chemistry, St. Paul. Minnessota (1972).

Ibrahim, D.M., S.A. EL-Hemaly, “Thermal treatment of rice-husk ash: effect of time firing on pore structure and crystallite size”, Thermochimica Acta, 37, 347, (1980).

Jackson, S.D., F.J. Robertson, J. Willis, “A study of copper/silica catalysts: reduction, adsorption and reaction”, Journal of Molecular Catalysis, 63, 255, (1990).

Liou, T.-H., F.-W. Chang, “The nitridation kinetics of pyrolyzed rice husk”, Industrial and Engineering Chemistry Research, 35, 3375, (1996).

Liou, T.-H., F.-W. Chang, J.-J. Lo, “Pyrolysis kinetics of acid-leached rice husk”, Industrial and Engineering Chemistry Research, 36, 568, (1997).

Longgaback, J.R., F. Banner, Industrial and Laboratory Pyrolyusis, Chap. 27, 476, (1976).

Luo, M.F., P. Fang, M. He, Y.L. Xie, “In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation”, Journal of Molecular Catalysis A: Chemical, 239, 243, (2005).

Mansaray, K.G., A.E. Ghaly, “Physical and thermochemical properties of rice husk”, Energy Sources, 19, 989, (1997).

Mile, B., D. Stirling, M.A. Zammitt, A. Lovell, M. Webb, “The location of nickel oxide and nickel in silica-supported catalysts: Two forms of “NiO” and the assignment of temperature-programmed reduction profiles”, Journal of Catalysis, 114, 217, (1988).

Moreau, F., G.C. Bond, “Preparation and reactivation of Au/TiO2 catalysts”, Catalysis Today, 122, 260, (2007).

Navarro, R.M., M.A. Pena, C. Merino, J.L.G. Fierro, “Production of hydrogen by partial oxidation of methanol over carbon-supported copper catalysts”, Topics in Catalysis, 30/31, 481, (2004).
Navarro, R.M., M.A. Pena, J.L.G. Fierro, “Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behaviour of the reformer”, Journal of Catalysis, 212, 112, (2002).

Nizami, M.S., K. Hussain, M.K. Farooq, M.Z. Iqbal, “Pyrolitic extraction of amorphous silica from rice husk”, Pakistan Journal of Science and Industrial Research, 36, 462 (1994).

Parks, G.A., “The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems”, Chemical Reviews, 65, 177, (1965).

Patel, M., A. Karera, P. Prasanna, “Effect of thermal and chemical treatments on carbon and silica contents in rice husk”, Journal of Materials Science, 22, 2457, (1987).

Reitz, T.L., S. Ahmed, M. Krumpelt, R. Kumar, H.H. Kung, “Methanol reforming over CuO/ZnO under oxidizing conditions”, Studies in Surface Science and Catalysis, 130, 3645, (2000).

Richardson, J.T., R.J. Dubus, “Crystallite size distributions of sintered nickel catalysts”, Journal of Catalysis, 57, 417, (1979).

Riverors, H., C. Garz, “Rice husks as a source of high purity silica”, Journal of Crystal Growth, 22, 4665, (1987).

Siddiquey, I.A., T. Furusawa, M. Sato, N. Suzuki, “Microwave-assisted silica coating and photocatalytic activities of ZnO nanoparticles”, Materials Research Bulletin, 43, 3416, (2008).

Tsay, M.-T., F.-W. Chang, “Characterization and reactivity of RHA-Al2O3 composite oxides supported nickel catalysts”, Catalysis Communications, 2, 233, (2001).

Tsay, M.-T., F.-W. Chang, “Characterization of rice husk ash-supported nickel catalysts prepared by ion exchange”, Applied Catalysis A: General, 203, 15, (2000).



Turco, M., G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: the role of Cu and the dispersing oxide matrix”, Applied Catalysis B: Environmental, 77, 46, (2007).

Ubago-Pérez, R., F. Carrasco-Marín, C. Moreno-Castilla, “Methanol partial oxidation on carbon-supported Pt and Pd catalysts”, Catalysis Today, 123, 158, (2007).

van den Oetelaar L.C.A., A. Partridge, S.L.G. Toussaint, C.F.J. Flipse, H.H. Brongersma, “A Surface science study of model catalysts. 2.Metal-support interactions in Cu/SiO2 model catalysts”, Journal of Physical Chemistry B, 102, 9532, (1998).

van der Grift, C.J.G., P.A. Elberse, A. Mulder, J.W. Geus, “Preparation of silica-supported copper catalysts by means of deposition-precipitation”, Applied Catalysis, 59, 275, (1990a).

van der Grift, C.J.G., A.F.H. Wielers, A. Mulder, J.W. Geus, “The reduction behavior of silica- supported copper catalysts prepared by deposition- precipitation”, Thermochimica Acta, 171, 95, (1990b).

van der Grift, C.J.G., A. Mulder, J.W. Geus, “ Characterization of silica-supported copper catalysts by means of temperature-programmed reduction”, Applied Catalysis, 60, 181, (1990c).

van der Grift, C.J.G., A.F.H. Wielers, B.P.J. Joghi, J. van Beijnum, M. de Boer, M. Versluijs-Helder, J.W. Geus, “Effect of the reduction treatment on the structure and reactivity of silice-supported copper particles”, Journal of Catalysis, 131, 178, (1991).

Velu, S., K. Suzuki, T. Osaki, “ Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, Catalysis Letters, 62, 159, (1999).

Wang, B., Z. Xu, X. Qian, X. Genhui, “Preparation and characterization of Cu/SiO2 catalyst and its catalytic activity for hydrogenation of diethyl oxalate to ethylene glycol”, Chinese Journal of Catalysis, 29, 275, (2008).


Wang, Z., J. Xi, W. Wang, G. Lu, “Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts”, Journal of Molecular Catalysis A: Chemical, 191, 123, (2003a).

Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151, (2003b).

Yahiro, H., K. Nakaya, T. Yamamoto, K. Saiki, H. Yamaura, “Effect of calcinations temperature on the catalytic activity of copper supported onγ-alumina for the water-gas-shift reaction”, Catalysis Communications, 7, 228, (2006).

Yalcin, N., V. Sevinc, “Studies on silica obtained from rice husk”, Ceramics International, 27, 219, (2001).

Yin, A., X. Guo, W.L. Dai, H. Li, K. Fan, “Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol”, Applied Catalysis A: General, 349, 91, (2008).

Yin, A., X. Guo, W.L. Dai, H. Li, K. Fan, “Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol”, Applied Catalysis A: General, 349, 91, (2008).

Yoshida, S., O. Yoshiko, K. Kakuzo, “Chemical forms, mobility and deposition of silicon in rice plant”, Soil Science and Plant Nutrition, 8, 15, (1962).

石井弘毅,“圖解燃料電池”,世茂 (2008)。

衣寶廉,“燃料電池-原理與應用”,五南圖書出版公司 (2005)。

郭茂穗,“以不同方法製備稻殼灰分–氧化鋁擔載鎳觸媒之研究”,國立中央大學化學工程與材料工程研究所博士論文 (2003)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔