(3.236.228.250) 您好!臺灣時間:2021/04/13 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳佑倫
研究生(外文):You-lun Chen
論文名稱:探討添加離子液體[EMIM][DEP]對於酵素改質玉米澱粉的影響
論文名稱(外文):Effects of added ionic liquid [EMIM] [DEP] for the enzymatic modification of corn starch
指導教授:徐敬衡徐敬衡引用關係
指導教授(外文):Chin-hang Shu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:78
中文關鍵詞:酵素離子液體抗性澱粉
外文關鍵詞:EnzymeIonic liquidResistant starch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用pullulanase水解玉米澱粉來製備高含量的抗性澱粉。經過pullulanase水解後,置於滅菌釜中,以121℃高壓蒸煮1小時,接著在室溫下冷卻之,於4 ℃下、靜置24小時,再重複此步驟一次後,置於60 ℃烘箱中,將樣品烘乾。有添加離子液體的最佳水解條件為反應時間24小時、pH=6.0、反應溫度46 ℃及pullulanase添加量100 μL;而無添加離子液體的最佳水解條件為反應時間32小時、pH=5.5、反應溫度44 ℃及pullulanase添加量150 μL;抗性澱粉含量分別為55.27%與45.44% (w/w)。差示掃描熱分析技術(DSC)被用來分析玉米澱粉及抗性澱粉的糊化溫度,由DSC吸熱曲線顯示,經過改質的玉米澱粉結晶與未改質的玉米澱粉,其結晶完全不同。抗性澱粉的吸熱曲線除了在96 ℃左右出現一個小吸熱峰,在130 ℃左右則又出現另一吸熱峰,Tp為173 ℃左右。隨著抗性澱粉含量增加,Tp也隨之上升。
In this research, high resistant starch content product was prepared by hydrolyzing of corn starch with pullulanase. The product of resistant starch was obtained by pressure-cooking the resulting hydrolysate in an autoclave at 121 oC for 1 h, cooling at room temperature, storing at 4 oC for 24 h, autoclaving/cooling for 2 repetition cycle and drying an oven (60 oC). The optimal hydrolyzing conditions were investigated and the optimum conditions with ionic liquid were as follows: time, 24 h; pH, 6.0; temperature, 46 oC; amount of pullulanase, 100 μL. The optimum conditions without ionic liquid were as follows: time, 32 h; pH, 5.5; temperature, 44 oC; amount of pullulanase, 150 μL. The content of resistant starch in the product was 55.27% (w/w) with ionic liquid and 45.44% (w/w) without ionic liquid. Differential Scanning Calorimeter (DSC) was used to determine the gelatinization temperature of corn starch and resistant starch (RS). The DSC curves indicated that there was evident difference between the crystal of corn starch and RS. Besides a small peak at about 96 oC being on the DSC curves of RS, another peak began to appear at about 130 oC, and the peak temperature of transformation was about 173 oC. The transformation peak temperature increased gradually with the enhancement of the RS content in the samples.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 澱粉之介紹 3
2-2 澱粉顆粒的結構 5
2-2-1 結晶區 7
2-2-2 非結晶區 8
2-3 抗性澱粉之介紹 9
2-3-1 抗性澱粉的定義 9
2-3-2 抗性澱粉的分類 9
2-4 RS3型抗性澱粉 10
2-4-1 糊化 11
2-4-2 結晶 11
2-4-3 抗性澱粉形成機制 12
2-4-4 RS3型抗性澱粉生成 15
2-5 影響抗性澱粉的因素 17
2-5-1 食品中其他成分的影響 17
2-5-2 直鏈澱粉與支鏈澱粉的比例 18
2-5-3 直鏈澱粉分子的鏈長度 18
2-5-4 加工方法 19
2-5-5 儲藏條件 19
2-6 抗性澱粉在生理上得幫助 20
2-6-1 結腸癌的預防 20
2-6-2 降血糖作用 21
2-6-3 抗性澱粉作為益菌生 21
2-6-4 降血膽固醇的影響 22
2-6-5 抑制脂肪堆積 22
2-6-6 減少膽囊結石形成 22
2-6-7 礦物質的吸收 23
2-7 離子液體之介紹 23
2-7-1離子液體的定義 23
2-7-2 離子液體的發展 26
2-7-3 離子液體的特殊物理性質 26
2-7-4 離子液體的應用 27
第三章 材料與方法 29
3-1 實驗材料 29
3-1-1 澱粉 29
3-1-2 藥品 29
3-2 實驗儀器與設備 31
3-3 實驗方法 34
3-3-1實驗設計 34
3-3-2 離子液體[EMIM][DEP]製備[61] 35
3-3-2 加熱冷卻法製備抗性澱粉 36
3-3-3 酵素法製備抗性澱粉 37
3-4 分析方法 38
3-4-1 抗性澱粉含量分析 38
3-4-2 澱粉分子量分析(GPC-MALLS-RI )[62] 41
3-4-3 抗性澱粉分子量分析(GPC-RI ) 42
第四章 實驗結果與討論 44
4-1 抗性澱粉含量分析 44
4-1-1 加熱冷卻法 44
4-1-2 離子液體對於酵素活性的影響 47
4-1-3 酵素反應時間對抗性澱粉生成的影響 52
4-1-4 pH值對酵素反應生成抗性澱粉的影響 55
4-1-5 反應溫度對於酵素反應生成抗性澱粉的影響 58
4-1-6 酵素添加量對抗性澱粉生成的影響 61
4-2 抗性澱粉熱性質分析 64
4-3 離子液體的回收 68
第五章 結論與建議 69
5-1 結論 69
5-2 建議 70
第六章 參考文獻 71
[1] Ratnayake W. S., Jackson D. S. Thermal behavior of resistant starches RS 2, RS 3, and RS 4. Journal of Food Science. 2008;73:356-366.
[2] Blazek J., Salman H., Rubio A. L., Gilbert E., Hanley T., Copeland L. Structural characterization of wheat starch granules differing in amylose content and functional characteristics. Carbohydrate Polymers. 2009;75:705-711.
[3] Haralampu S. G. Resistant starch—a review of the physical properties and biological impact of RS3. Carbohydrate Polymers. 2000;41:285-292.
[4] Sharma A., Yadav B. S., Ritika. Resistant Starch: Physiological Roles and Food Applications. Food Reviews International. 2008;24:193-234.
[5] Hizukuri S., Takeda Y., Yasuda M., Suzuki A. Multibranched nature of amylose and the action of debranching enzymes. Carbohydrate Research. 1981;94:205-213.
[6] Gallant D.J., Bouchet B., Baidwin P.M. Microscopy of starch:evidence of a new level of granule organization. Carbohydrate Polymers. 1997;32:177-191.
[7] Robin J. P., Mercier C., Charbonnire R., Guilbot A. Lintnerized starches gel-filtration and enzymatic studies of insoluble residues from prolonged acid tratment of potato starch. Cereal Chemistry. 1974;51:389-406.
[8] Blanshard, J.M.V. The significance of structure and function of the starch granule in baked products. In Chemistry and Physics of Baking JMV Blanshard, ed Royal Society of Chemistry, London. 1986:1-13.
[9] Imberty A., Chanzy H., Perez S., Buleon A., Tran V. New three-dimensional structure for A-type starch. Macromolecules. 1987;20:2634-2646.
[10] Imberty A., Perez S. A revisit to the three-dimensional structure of B-amylose. Biopolymers. 1988;27:1205-1221.
[11] Gallant D. J., Bouchet B., Buleon A., Perez S. Physical characateristics of starch granules and susceptibility to enzymatic degradation. European Journal of Clinical Nutrition. 1992;46:S3-S16.
[12] Manners DJ. Some aspects of the structure of starch. Cereal Foods World. 1985;30:146-153.
[13] Englyst H. N., Kingman S. M., Cummings J. H. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition. 1992;46:33-50.
[14] Brown I. L., McNaught K. J., Moloney E. Hi-maize™: new directions in starch technology and nutrition. Food Australia. 1995;47:272-285.
[15] Hernández O., Emaldi U., Tovar J. In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers. 2008;71:648-655.
[16] Sajilata M. G., Singhal R. S., Kulkarni P. R. Resistant Starch - A review. Comprehensive Reviews in Food Science and Food Safety. 2006;5:1-17.
[17] Eerlingen R. C., Jacobs H., Delcour J. A. Enzyme-resistant starch.V. Effect of retrogradation of waxy maize starch on enzyme susceptibility. Cereal Chemistry. 1994;71:351-365.
[18] Erlingen R. C., Delcour J. A. Formation, analysis, structure and properties of type III enzyme resistant starch. Journal of Cereal Science. 1995;22:129-138.
[19] Wepner B., Berghofer E., Miesenberger E., Tiefenbacher K. Citrate Starch – Application as Resistant Starch in Different Food Systems. Starch. 1999;51:354-361.
[20] Wu H. C., Sarko A. The double helical molecular structure of crystalline a-amylose. Carbohydrate Research. 1978;61:27-40.
[21] Sanz T., Salvador A., Baixauli R., Fiszman S. M. Evaluation of four types of resistant starch in muffins. II. Effects in texture, colour and consumer response. European Food Research & Technology. 2009;229:197-204.
[22] 李曉璽, 溫其標. 抗酶解淀粉的研究進展及其在食品工業中的應用. 武漢工業學院學報 2000;3:12~15.
[23] 蹇華麗, 高群玉, 梁世中. 抗性淀粉糊化規律的研究. 食品科技. 2003;7:44~47.
[24] 張燕萍. 變性澱粉製造與應用. 化學工業出版社. 2001.
[25] 蹇華麗, 高群玉, 梁世中. 抗性淀粉結晶性質的研究. 食品科學. 2003;7:44~47.
[26] Eerlingen R. C., Deceunick M., Delcour J. A. Enzyme-resistant starch. II. Influence of amylose chain on resistant starch formation. Cereal Chemistry. 1993;70:345-350.
[27] Gao Q. , Li S., Jian H., Liang S. Preparation and properties of resistant starch from corn starch with enzymes. African Journal of Biotechnology. 2011;10:1186-1193.
[28] Belitz H. D., Grosch W. Polysaccharides. In: Food chemistry 2nd ed Berlin, Germany: Springer-Verlag. 1999:301.
[29] 趙凱, 張守文, 方桂珍. 抗性淀粉的特性研究. 哈爾濱商業大學學報(自然科學版). 2002;18:550-553.
[30] 楊光, 丁霄霖. 壓熱處理對抗性淀粉形成的影響. 中國糧油學報. 2001;6:45-47.
[31] Niba L.L., Hoffman J. Resistant starch and β-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving. Food Chemistry. 2003;81:113-118.
[32] Chandrashekar A., Kirleis A. W. Influence of Protein on Starch Gelatinization in Sorghum. Cereal Chemistry. 1988;65:457-462.
[33] Escarpaa A., Gonzáleza M. C., Moralesa M. D., Saura-Calixtob F. An approach to the influence of nutrients and other food constituents on resistant starch formation. Food Chemistry. 1997;60:527-532.
[34] Berry C.S. Resistant starch: Formation and measurement of starch that survives exhaustive digestion with amylolytic enzymes during the determination of dietary fibre. Cereal Science. 1986;4:301-314.
[35] Parchure A.A., Kulkarni P.R. Effect of food processing treatments on generation of resistant starch. International Journal of Food Sciences and Nutrition. 1997;4:257-260.
[36] Alejandra G. A., Antonio J. E., Nuria M. C., Laura B., Fulgencio S. C. Assessment of some parameters involved in the gelatinization and retrogration of starch. Food Chemistry. 1999;66:181-187.
[37] Nugent A. P. Health properties of resistant starch. British Nutrition Foundation. 2005;30:27-54.
[38] Topping D. L., Anthony M. F., Bird F. Resistant starch as prebiotic and synbiotic: State of the art. Proceedings of the Nutrition Society. 2003;62:171-176.
[39] Ferguson L. R., Tasman-Jones C., Englyst H., Harris P. J. Comparativeeffects of three resistant starch preparations on transit time and short-chain atty acid production in rats. Nutrition & Cancer. 2000;36:230-237.
[40] Raben A., Tagliabue A., Christensen N. J., Madsn J., Holst J. J., Astrup A. Resistant starch: The effect on postprandial glycemia, hormonal response and satiety. American Journal of Clinical Nutrition. 1994;60:544-551.
[41] Scholz-Ahrens E., Ade P., Marten B., Weber P., Timm W., Yahya A. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineralcontent, and bone structure. Journal of Nutrition. 2007;137:838-846.
[42] Tapsell L. C. Diet and metabolic syndrome: where does resistant starch fit in? Journal of the Association of Analytical Chemists International. 2006;87: 756-760.
[43] Ranganathan S., Champ M., Pechard C., Blanchard P., Nguyen M., Colonna P. Comparative study of the acute effects of resistant starch and dietary fibres on metabolic indexes in men. American Journal of Clinical Nutrition. 1994;59:879-883.
[44] Raben A., Andersen K., Karberg M. A. Acetylation of or B-cyclodesetrin addition to potato starch: Beneficial effect on glucose metabolism and appetite sensations. American Journal of Clinical Nutrition. 1997;66:304–314.
[45] Trinidad T. P., Wolever T. M. S., Thompson L. U. Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. American Journal of Clinical Nutrition. 1999;63:574-578.
[46] Coudray C., Bellanger J., Castiglia-Delavaud C., Rémésy C., Vermorel M., Rayssignuier Y. Effect of soluble or partly soluble dietary fibressupplementation on absorption and balance of calcium, magnesium, iron andzinc in healthy young men. European Journal of Clinical Nutrition. 1997;51:375-380.
[47] Morais M. B., Feste A., Miller R. G., Lifichitz C. H. Effect of resistant starch and digestible starch on intestinal absorption of calcium, iron and zinc in infant pigs. Paediatric Research. 1996;39: 872-876.
[48] Wilkes J. S. A short history of ionic liquids - from molten salts to neoteric solvents. Green Chemistry. 2002;4:73-80.
[49] Keskina S., Kayrak-Talaya D., Akman U., Hortacsu O. A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluids. 2007;43:150-180.
[50] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical reviews. 1999;99:2071-2084.
[51] Hurley F. H., Wier T. P. The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of the Electrochemical Society. 1951;98:207-212.
[52] Chum H. L., Koch V. R., Miller L. L., Osteryong RA. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. Journal of the American Chemical Society. 1975;97:3264-3275.
[53] Wilkes J. S. , Levisky J. A. , Wilson R. A. , Hussey C. L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry. 1982;21:1263-1274.
[54] Fannin Jr A. A., Floreani D. A., King L. A., Landers J. S., Piersma B. J., Stech D. J., et al. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. American Chemical Society. 1984;88:2614-2621.
[55] Wilkes J. S., Zaworotko M.J. . Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications. 1992:965-967.
[56] Olivier-Bourbigou H., Magna L., Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General. 2010;373:1-56.
[57] Park S., Kazlauskas R. J. Biocatalysis in ionic liquids-advantages beyond green technology. Current Opinion in Biotechnology,. 2003;432-437.
[58] Macfarlane D. R., Forsyth M., Howlett P. C. Ionic Liquids in Electrochemical Devices and Processes:Managing Interfacial Electrochemistry. Accounts of Chemical Research. 2007;40:1165-1173.
[59] Silvester D. S., Aldous L., Hardacre C. An electrochemical study of the oxidation of hydrogen at platinum electrodes in several room temperature ionic liquids. Journal of Physical Chemistry B. 2007;111:5000-5007.
[60] Zhao D., Wang Y., Duan E. Oxidative Desulfurization of Fuel Oil by Pyridinium-Based Ionic Liquids. Molecules. 2009;14:4351-4357.
[61] 蔣小川, 于春影, 李春喜. 磷酸酯類離子液體的製備與應用. 北京化工大學學報. 2006;33:5-7.
[62] Yokoyama W., Renner-Nantz J. J. , Shoemaker C. F. Starch molecular mass and size-exclusion chromatography in DMSOLiBr coupled with multiple angle laser light scattering. Cereal Chemistry. 1998;75:530-555.
[63] Gao Q., Li S., Jian H., Liang S. Preparation and properties of resistant starch from corn starch with enzymes. African Journal of Biotechnology. 2011;10:1186-1193.
[64] Li Q., He Y. C., Xian M., Jun G., Xu X., Yang J. M., et al. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology. 2009;100:3570-3585.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 5. 古森本,生質能源作物之開發與潛力, 農業生技產業季刊,第十三期,第49頁,2008。
2. 53. 陳文恆、郭家倫、黃文松、王嘉寶,纖維酒精技術之發展,農業生技產業季刊,第九期,第62~69頁,2007。
3. 53. 陳文恆、郭家倫、黃文松、王嘉寶,纖維酒精技術之發展,農業生技產業季刊,第九期,第62~69頁,2007。
4. 53. 陳文恆、郭家倫、黃文松、王嘉寶,纖維酒精技術之發展,農業生技產業季刊,第九期,第62~69頁,2007。
5. 39. 呂穎彬,生命週期評估資料庫應用,工業污染防治,第113~140頁,1998。
6. 39. 呂穎彬,生命週期評估資料庫應用,工業污染防治,第113~140頁,1998。
7. 35. 施瑞虎,酒精汽油性能與經濟性概況,化工資訊與商情,69期,第36~37頁,2009.03。
8. 39. 呂穎彬,生命週期評估資料庫應用,工業污染防治,第113~140頁,1998。
9. 35. 施瑞虎,酒精汽油性能與經濟性概況,化工資訊與商情,69期,第36~37頁,2009.03。
10. 35. 施瑞虎,酒精汽油性能與經濟性概況,化工資訊與商情,69期,第36~37頁,2009.03。
11. 27. 吳耿東,“認識生質能源”,物理雙月刊,三十卷4期,第377~380頁,2008。
12. 27. 吳耿東,“認識生質能源”,物理雙月刊,三十卷4期,第377~380頁,2008。
13. 12. 曾益民,生質酒精汽油, 綠色能源與材料,工程專題報導,第66~73頁,2007。
14. 27. 吳耿東,“認識生質能源”,物理雙月刊,三十卷4期,第377~380頁,2008。
15. 12. 曾益民,生質酒精汽油, 綠色能源與材料,工程專題報導,第66~73頁,2007。
 
系統版面圖檔 系統版面圖檔