(3.238.174.50) 您好!臺灣時間:2021/04/16 16:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃正吉
研究生(外文):Zheng-ji Huang
論文名稱:苯於CuO/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
論文名稱(外文):Catalytic oxidation of benzene over CuO/Ce0.9−xZr0.1MnxO2 catalysts
指導教授:陳吟足廖炳傑
指導教授(外文):Yin-Zu ChenBiing-Jye Liaw
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:108
中文關鍵詞:苯的全氧化反應氧化銅氧化鈰氧化鋯氧化錳
外文關鍵詞:ZrO2MnOxCeComplete benzene oxidationCuOCeO2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以共沉澱法將不等量ZrO2引入CeO2製備具良好redox特性的共溶性氧化物Ce1-xZrxO2作為擔體,並以含浸法製備CuO/Ce1-xZrxO2觸媒;將MnOx以含浸法擔載在Ce0.9Zr0.1O2作為擔體,製備CuO/(MnOx/Ce0.9Zr0.1O2)觸媒;另以共沉澱法於Ce0.9Zr0.1O2中引入不等量的MnOx製備Ce0.9-xZr0.1Mnx O2作為擔體,製備CuO/Ce0.9-xZr0.1MnxO2組成觸媒進行揮發性有機物苯的全氧化反應。藉此三階段研究探討擔體redox能力與MnOx所扮演的角色。本研究利用空氣由飽和蒸氣瓶帶出定量(500~1500 ppm)的苯蒸氣於F/W = 6000~24,000 ml h-1 gcat-1條件下進行苯的全氧化反應,並以BET、TPR、Raman、XPS及H2-TPR等分析探討觸媒之物理特性與表面性質。
不具redox特性的γ-Al2O3作為擔體之CuO/γ-Al2O3觸媒於苯的全氧化活性遠不及CuO/CeO2觸媒。Zr引入CeO2可大幅增進CeO2的redox特性,但CuO/Ce1-xZrxO2觸媒活性反下降,擔體redox特性是銅基觸媒必備的條件,但redox的強弱並不是苯全氧化反應的最重要關鍵。含浸法將MnOx負載於Ce0.9Zr0.1O2作為擔體可以明顯提升CuO/(MnOx/Ce0.9Zr0.1O2)觸媒活性,MnOx於苯的全氧化反應也扮演重要的角色。以沉澱法製得三者Ce、Zr與Mn三者的共氧化物Ce0.9-xZr0.1MnxO2,當Mn引入量為 0.3時,擔體有最大的表面積,且晶格結構仍完整,大部分的MnOx進入晶格中增進擔體的釋/儲氧能力,一部分的MnOx分散於擔體表面修飾Ce0.9Zr0.1O2的表面,7%CuO/Ce0.6Zr0.1Mn0.3O2有最佳活性表現(T100為235 °C);引入量大於0.3時,部分MnOx無法固溶進Ce0.9Zr0.1O2中,產生Mn2O3相聚集分離,反不利於反應。
CuO/Ce0.9-xZr0.1MnxO2觸媒於苯的全氧化反應中,Ce0.9-xZr0.1MnxO2擔體本身對苯就有不錯的反應活性,負載CuO後略為提升反應活性,顯示CuO並不是苯全氧化反應主要的活性中心,因此,Ce0.9-xZr0.1MnxO2擔體不論是自身進行反應或釋出晶格氧進行氧化反應的角色皆非常重要,是影響活性的關鍵。CuO/Ce0.9-xZr0.1MnxO2觸媒進行苯的全氧化反應有相當不錯的活性表現,能處理的苯濃度範圍相當廣且有相當高的穩定性,經過200小時反應仍能維持活性,應用於揮發性有機物苯的去除是一相當不錯的觸媒選擇。
In this study, ZrO2 was incorporated into CeO2 by co-precipitation method to prepare good solid solution Ce1-xZrxO2 mixed oxides. Ce1-xZrxO2 mixed oxides were prepared as supports of CuO/Ce1-xZrxO2 catalysts, which prepared by impregnation method; MnOx was impregnation on Ce1-xZrxO2 as supports of CuO/(MnOx/Ce0.9Zr0.1O2) catalysts; The other to ZrO2 and MnOx was incorporated into CeO2 by co-precipitation method to prepare good solid solution Ce0.9-xZr0.1MnxO2 mixed oxides. Ce0.9-xZr0.1MnxO2 mixed oxides were prepared as supports of CuO/Ce0.9-xZr0.1MnxO2 catalysts, which prepared by impregnation method. Then CuO/Ce0.9-xZr0.1MnxO2 catalysts were used in the complete oxidation reaction of volatile organic compound benzene. Besides the effects of redox properties and the role of MnOx were discussed by three steps study. The benzene vapor feed was diluted with air into the reactor at the flow rate of 100 ml/min (F/W = 6000~24,000 ml h-1gcat-1). The physical and surface properties of catalysts were determined by BET, XRD, Raman, XPS and H2-TPR.
The γ-Al2O3 without redox properties was used as support in CuO/ γ-Al2O3 catalyst which the activity was much lower than CuO/CeO2 over benzene total oxidation reaction. ZrO2 was incorporated into CeO2 can enhance largely redox properties, but CuO/Ce1-xZrxO2 catalyst activeness counter-drop. Redox behavior of support of copper based catalysts was essential for total benzene oxidation but was the critical factor. MnOx was impregnation on Ce0.9Zr0.1O2 can enhance the CuO/(MnOx/Ce0.9Zr0.1O2) catalytic activity obviously, MnOx in the total oxidation of benzene is also playing an important role. The ZrO2 and MnOx was incorporated into CeO2 by co-precipitation method to prepare good solid solution Ce0.9-xZr0.1MnxO2 mixed oxides. When x=0.3, support has the largest surface area and the lattice structure is still perfect. Most of the MnOx into the lattice to enhance the support store/release oxygen storage capacity, a part of the MnOx in the surface modification of dispersed surface Ce0.9Zr0.1O2. The best performance of active is 7%CuO/ Ce0.6Zr0.1Mn0.3O2 (T100=235 °C); most of incorporated manganese over a fraction of 0.3 could not be fixed in the framework of CeO2 and thus appeared as well dispersed Mn2O3.
CuO/Ce0.6Zr0.1Mn0.3O2 catalyst in the total oxidation of benzene, the mixed oxide Ce0.6Zr0.1Mn0.3O2 exhibited considerable reactivity on benzene oxidation, and a slight increase in load after the reactivity of CuO, demonstrated that the CuO is not the active site in the complete oxidation reaction of benzene. Therefore, the key points of Ce0.6Zr0.1Mn0.3O2 supports for complete oxidation reaction of benzene are very important, not only because of itself oxidation, but also because of the synergetic role of offering lattice oxygen to reaction.
CuO/Ce0.6Zr0.1Mn0.3O2 catalysts exhibited good activity and stability toward benzene, and could eliminate a wide range of benzene. Even after 200hr of complete oxidation reaction of benzene, it also showed 100% conversion. It is a very practical and ideal catalyst for complete oxidation reaction of benzene.
中文摘要 i
英文摘要 iii
誌謝 v
目 錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
第二章 文獻回顧 3
2-1 揮發性有機物(VOCs)之危害與處理 3
2-1-1 VOCs的簡介 3
2-1-2 VOCs的去除 4
2-1-3 苯的來源及危害 7
2-2 苯全氧化反應之觸媒催化性質 10
2-2-1 Pt及Pd觸媒 10
2-2-2 Au觸媒 16
2-2-3 金屬氧化物觸媒 19
2-2-4 CuO觸媒 22
2-3 CeO2、CuO/CeO2與CuO/Ce1-xMexO2相關觸媒 24
2-3-1 CeO2與CuO/CeO2觸媒特性 24
2-3-2 CuO/Ce1-xMexO2觸媒 26
第三章 實驗方法與設備 35
3-1 觸媒製備 35
3-1-1 Ce1-xZrxO2擔體與CuO/Ce1-xZrxO2觸媒之製備 35
3-1-2 MnOx/Ce0.9Zr0.1O2擔體與CuO/(MnOx/Ce0.9Zr0.1O2)觸媒之製備 36
3-1-3 Ce0.9-xZr0.1MnxO2擔體與CuO/Ce0.9-xZr0.1MnxO2觸媒之製備 36
3-2 觸媒性質鑑定 38
3-2-1 比表面積測定(BET) 38
3-2-2 X-射線繞射分析(XRD) 39
3-2-3 X-射線光電子光譜(XPS) 40
3-2-4 氫-程溫還原(H2-TPR) 41
3-2-5 顯微拉曼光譜儀(Microscopic Raman Spectroscopy) 41
3-3 苯的全氧化反應研究 42
3-4 轉化率之計算 43
3-5 檢量線之量測 46
3-6 實驗藥品與氣體 48
第四章 結果與討論 49
4-1 CuO/Ce1-xZrxO2觸媒 49
4-1-1擔體基本性質鑑定 49
4-1-2 觸媒活性測試 55
4-2 CuO/(MnOx/Ce0.9Zr0.1O2)觸媒 57
4-2-1 擔體基本性質鑑定 57
4-2-2 觸媒表面性質鑑定 61
4-2-3 觸媒活性測試 67
4-3 CuO/Ce0.9-xZr0.1MnxO2觸媒 72
4-3-1 擔體基本性質鑑定 72
4-2-2 觸媒表面性質鑑定 77
4-3-3 觸媒活性測試 82
4-3-4 觸媒反應機制 86
4-4 苯進料濃度與F/W對反應的影響 89
4-4-1 苯進料濃度的影響 89
4-4-2 不同F/W值的影響 89
4-5 200小時反應穩定性測試 92
第五章 結論 94
總 結 96
參考文獻 97
[1]洪文雅,「揮發性有機廢氣處理技術簡介」,台灣環保產業雙週刊,2003年10月。資訊報告,No.61,pp.2-6,1994。
[2]李定粵,「觸媒的原理與應用」,正中書局,1990年10月。
[3]朱小容,陳郁文,「工業廢氣特殊處理技術」,化工資訊,pp.68-78,1992年2月。
[4]劉國棟,「VOC 管制趨勢展望」,工業汙染防治,第10卷,第48期,pp.15-31,1993。
[5]「臭氣處理程序設計評估技術」,工研院化工所,1991。
[6]資訊報告,No.61,pp.2-6,1994。
[7]許朝翔,「以粒狀觸媒氧化甲苯之研究」,中山大學碩士論文,2007年。
[8]工業技術研究院環境與安全衛生技術發展中心 MSDS,2007。
[9]行政院環保署毒性化學物質,毒理資料庫列管物質,苯。
[10]P. Papaefthimiou, T. Ioannides, X. E. Verykios, “Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts”, Appl. Catal. B: Environ. 13 (1997) 175-184.
[11]T. F. Garetto, C. R. Apestegu´ıa, “Structure sensitivity and in situ activation of benzene combustion on Pt/Al2O3 catalysts”, Appl. Catal. B: Environ. 32 (2001) 83-94.
[12]A. A. Barresia, G. Baldi, “Deep catalytic oxidation kinetics of benzene-ethenylbenzene mixtures”, Chem. Eng. Sci. 47 (1992) 1943-1953.
[13]T. F. Garetto, M. S. Avila, “Deep Oxidation of Benzene on Pt/V2O5–TiO2 Catalysts”, Catal Lett (2009) 130:476–480.
[14]K. T. Chuang, A. A. Davydov, A. R. Sanger, Mingqian Zhang “Effect of fluorination of alumina support on activity of platinum catalysts for complete oxidation of benzene”, Catal. Lett. 49 (1997) 155-161.
[15]C. A. Lin, J. C. Wu, J. W. Pan, C. T. Yeh, “Characterization of Boron - Nitride - Supported Pt Catalysts for the Deep Oxidation of Benzene”, J. of Catal. 210 (2002) 39-45.
[16]C. He, J. Li , P. Li , J. Chenga, Z. Hao, “Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation”, Appl. Catal. B: Environ. 96 (2010) 466–475.
[17]R.S.G. Ferreira, P.G.P. de Oliveira, F.B. Noronha, “The effect of the nature of vanadium species on benzene total oxidation”, Appl. Catal. B: Environ. 29 (2001) 275-283.
[18]M. Vassileva, A. Andreev, S. Dancheva, N. Kotsev, “Complete Catalytic oxidation of benzene over supported vanadium oxides modified by palladium”, Appl. Catal. 49 (1989) 125-141.
[19]R.S.G. Ferreira, P.G.P. de Oliveira, F.B. Noronha, “Characteriza -tion and catalytic activity of Pd/V2O5/Al2O3 catalysts on benzene total oxidation”, Appl. Catal. B: Environ. 50 (2004) 243-249.
[20]T. Garcia, B. Solsona, D. Cazorla-Amoro´s, A. Linares-Solano, S. H. Taylor, “Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds”, Appl. Catal. B: Environ. 62 (2006) 66-76.
[21]周珮萱, “Pd/Ce1-xYxO2-δ觸媒進行苯全氧化反應之研究”, 國立中央大學研究所碩士論文(2010)
[22]H. S. Kim, T. W. Kim, H. L. Koh, S. H. Lee, “Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity”, Appl. Catal. A: Gen. 280 (2005) 125-131.
[23]M. Zhang, B. Zhou, K. T. Chuang, “Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures”, Appl. Catal. B: Environ. 13 (1997) 123-130.
[24]F. Diehl, J. B. Jr., D. Duprez, I. Guibard a, G. Mabilon, “Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3. Influence of the structure of the molecule on its reactivity”, Appl. Catal. B:Environ. 95 (2010) 217–227.
[25]P. Papaefthimiou, T. Ioannides, X. E. Verykios, “Performance of doped Pt/TiO2, (W6+) catalysts for combustion of volatile organic compounds (VOCs)”, Appl. Catal. B: Environ. 15 (1998) 75-92.
[26]J. C. S. Wu, Z. A. Lin, F. M. Tsai, J. W. Pan, “Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts”, Catal. Today 63 (2000) 419-426.
[27]J. J. Li, X. Yanxu, Z. Jiang, Z. P. Hao, C. Hu, “Nanoporous silica-supported nanometric palladium: synthesis, characterization, and catalytic deep oxidation of benzene for complete benzene oxidation”, Environ. Sci. Technol. (2005) 1319-1323.
[28]劉世尹,“半導體廠PFCs及VOCs廢氣排放處理之研究”,國立中央大學博士論文(2008)
[29]D. Andreeva, R. Nedyalkova, L. Ilievaa, M. V. Abrashev, Y. Zhang, Y. Wang, “Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation”, Appl. Catal. A: General 246 (2003) 29-38.
[30]S. Y. Lai, Y. Qiu, W. Shen, “Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene”, J. Catal. 237 (2006) 303-313.
[31]D. Andreeva, T. Tabakova, L. Ilievaa, A. Naydenov, D. Mehanjiev, M. V. Abrashev, “Nanosize gold catalysts promoted by vanadium oxide supported on titania and zirconia for complete benzene oxidation”, Appl. Catal. A: Gen. 209 (2001) 291-300.
[32]L. Ilieva, J. W. Sobczak, M. Manzoli, B. L. Su, D. Andreeva, “Reduction behavior of nanostructured gold catalysts supported on mesoporous titania and zirconia”, Appl. Catal. A: Gen. 291 (2005) 85-92.
[33]V. Idakiev, L. Ilievaa, D. Andreeva, J. L. Blin, L. Gigot, B. L. Su, “Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia”, Appl. Catal. A: Gen. 243 (2003) 25-39.
[34]D. Andreeva, R. Nedyalkova, L. Ilievaa, M. V. Abrashev, “Gold–vanadia catalysts supported on ceria–alumina for complete benzene oxidation”, Appl. Catal. B: Environ. 52 (2004) 157-165.
[35]M. A. Centeno, M. Paulis, M. Montes, J. A. Odriozola, B. Taouk, “Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts”, Appl. Catal. A: Gen. 234 (2002) 65-78.
[36]D. Andreeva, P. Petrova, L. Ilieva, J. W. Sobczak, M. V. Abrashev, “Gold supported on ceria and ceria–alumina promoted by molybdena for complete benzene oxidation”, Appl. Catal. B: Environ. 67 (2006) 237-245.
[37]D. Andreeva, P. Petrova, L. Ilieva, J. W. Sobczak, M. V. Abrashev, “Design of new gold catalysts supported on mechanochemically activated ceria-alumina, promoted by molybdena for complete benzene oxidation”, Appl. Catal. B: Environ. 77 (2008) 364-372.
[38]R. Nedyalkova, L. Ilieva, M. C. Bernard, A. H. Goff , D. Andreeva, “Gold supported catalysts on titania and ceria, promoted by vanadia or molybdena for complete benzene oxidation”, Mater. Chem. and Phys. 116 (2009) 214-218.
[39]C. D. Pina, N. Dimitratos, E. Falletta, M. Rossi, A. Siani, “Catalytic performance of gold catalysts in the total oxidation of VOCs”, Gold Bull.(2007) 67-72.
[40]J. Lichtenberger, M. D. Amiridis, “Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts”, J. Catal. 223 (2004) 296-308.
[41]蘇崇毅, “蜂巢狀波洛斯凱特觸媒用於合成氣燃燒反應之研究”, 國立成功大學研究所碩士論文(2007)

[42]R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta, “Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion”, J. Mol. Catal. A: Chemical 197 (2003) 147-155.
[43]V. Blasin-Aubé, J. Belkouch, L. Monceaux, “General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst -influence of mixture”, Appl. Catal. B: Environ. 43 (2003) 175-186.
[44]V. D. Sokolovskii, “Principles of oxidative catalysis on solid oxides”, Catal. Rev. Sci. Eng. 32 (1990) 1-49.
[45]Y. M. Alifanti, M. Florea, V. I. Parvulescu, “Ceria-based oxides as supports for LaCoO3 perovskite catalysts for total oxidation of VOC”, Appl. Catal B: Environ. 70 (2007) 400-405.
[46]R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knözinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A: Gen. 243 (2003) 67-79.
[47]G. G. Xia, Y. G. Yin, W. S. Willis, J. Y. Wang, S. L. Suib, “Efficient stable catalysts for low temperature carbon monoxide oxidation”, J. Catal. 185 (1999) 91-105.
[48]K. Ramesh, L. Chen, F. Chen, Z. Zhong, J. Chin, H. Mook, Y. F. Han, “Preparation and characterization of coral-like nanostructured α-Mn2O3 catalyst for catalytic combustion of methane”, Catal. Commun. 8 (2007) 1421-1426.
[49]Y. F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I. K. Surjami, “Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts”, J. Catal. 253 (2008) 261-268.
[50]C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, X. Verykiosy, “Evaluation of γ-MnO2 as a VOC removal catalyst: comparison with a noble metal catalyst”, J. Catal. 178 (1998) 214-225.
[51]M. A. Peluso, L. A. Gambaro, E. Pronsato, D. Gazzoli, H. J. Thomas, J. E. Sambeth, “Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs”, Catal. Today 133-135 (2008) 487-492.
[52]R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knözinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A: Gen. 243 (2003) 67-79.
[53]F. C. Buciuman, F. Patcas, T. Hahn, “A spillover approach to oxidation catalysis over copper and manganese mixed oxides”, Chem. Eng. Prog. 38 (1999) 563-569.
[54]V. H. Vu, J. Belkouch, A. O. Dris, B. Taouk, “Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst”, J. Hazard. Mater. 169 (2009) 758-765.
[55]M. R. Morales, B. P. Barbero, L. E. Cadu´s, “Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts”, Appl. Catal. B: Environ. 67 (2006) 229-236.
[56]M. Ferrandon, J. CarnoÈ, S. JaÈraÊs, E. BjoÈrnbom, “Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: Characterisation”, Appl. Catal. A: Gen. 180 (1999) 141-151.
[57]M. I. Vass, V. Georgescu, “Complete oxidation of benzene on Cu-Cr and Co-Cr oxide catalysts”, Catal. Today 29 (1996) 463-470.
[58]S. C. Kim, “The catalytic oxidation of aromatic hydrocarbons over supported metal oxide”, J. Hazard. Mater. B91 (2002) 285–299.
[59]C. H. Wang, S. S. Lin, C. L. Chen, H. S. Weng, “Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons”, Chemosphere 64 (2006) 503-509.
[60]C. H. Wang, S. S. Lin, “Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons”, Appl. Catal. A: Gen. 268 (2004) 227-233.
[61]W. Liu, M. F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity”, J. Catal. 153 (1995) 304-316.
[62]W. Liu, M. F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction”, J. Catal. 153 (1995) 317-332.
[63]D. Delimaris, T. Ioannides, “VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method”, Appl Catal B: Environ. 89 (2009) 295-302.
[64]C. Hua, Q. Zhu, Z. Jiang, Y. Zhang, Y. Wang, “Preparation and formation mechanism of mesoporous CuO-CeO2 mixed oxides with excellent catalytic performance for removal of VOCs”, Micro. Meso. Mater. 113 (2008) 427-434.
[65]A. Martinez-Arias, M. Fernandez-Garcia, O. Gaivez, J. M. Coronado, J. A. Anderson, “Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts”, J. Catal. 195 (2000) 207-216.
[66]M. Ozawa, C. K. Loong, “In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts”, Catal. Today 50 (1999) 329-342.
[67]M. Daturi, E. Finocchio, C. Binet, J. C. Lavalley, F. Fally, V. Perrichon, “Study of bulk and surface reduction by hydrogen of CexZr1-xO2 mixed oxides followed by FTIR spectroscopy and magnetic balance”, J. Phys. Chem. B 103 (1999) 4884-4891.
[68]R. D. Monte, G. R. Rao, J. Kašpar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-Loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties”, J. Catal. 151 (1995) 168-177.
[69]P. Fornasiero, E. Fonda, R. D. Monte, G. Valic, J. Kaspar, M. Graziani, “Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides”, J. Catal., 187 (1999) 177-185.
[70]A. Martinez-Arias, M. Fernandez-Garcia, “Spectroscopic study of a Cu/CeO2 catalyst subjected to redox treatments in carbon monoxide and oxygen”, J. Catal. 182 (1999) 367-377.
[71]G. Vlaic, P. Fornasiero, S. Geremia, J. Kaspar, M. Graziani, “Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr-O local structure”, J. Catal. 168 (1997) 386-392.
[72]K. Otsuka, Y. Wang, M. Nakamura, “Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature”, J. Catal. 183 (1999) 317-324.
[73]C. Descorme, Y. Madier, D. Duprez, “Infrared study of oxygen adsorption and activation on cerium-zirconium mixed oxides”, J. Catal. 196 (2000) 167-173.
[74]陳翰全, “CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究”,中央大學碩士論文(2004).
[75]簡崇訓, “CuO/CexZr1-xO2觸媒進行甲苯完全氧化反應之研究”,中央大學碩士論文(2009)
[76]C. Hu, Q. Zhu, Z. Jiang, “Nanosized CuO-ZrxCe1-xOy aerogel catalysts prepared by ethanol supercritical drying for catalytic deep oxidation of benzene”, Powder Technol. 194 (2009) 109-114.
[77]C. Hu, “Highly efficient complete oxidation of dilute benzene over ultrafine Cu0.1Ce0.5Zr0.4O2-δ catalyst in a fluidized bed reactor”, Catal. Commun. 10 (2009) 2008-2012.
[78]G. Blanco, M. A. Cauqui, J. J. Delgado, A. Galtayries, J. A. Pe´ rez-Omil1, J. M. Rodr´guez-Izquierdo, “Preparation and charac -terization of Ce-Mn-O composites with applications in catalytic wet oxidation processes”, Appl. Catal. A: Gen. 255 (2003) 331-336.
[79]S. Imamura, M. Shono, N. Okamoto, A. Hamada, S. Ishida, “Effect of cerium on the mobility of oxygen on manganese oxides”, Appl. Catal. A: Gen. 142 (1996) 279-288.
[80]F. Arena, G. Trunfio, J. Negro, B. Fazio, L. Spadaro, “Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “redox-precipitation” route”, Chem. Mater. 19 (2007) 2269-2276.
[81]F. Arena, G. Trunfio, J. Negro, L. Spadaro, “Synthesis of highly dispersed MnCeOx catalysts via a novel redox-precipitation route”, Mater. Res. Bull. 43 (2008) 539-545.
[82]H. Chen, A. Sayari, A. Adnot, F. Larachi, “Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation”, Appl. Catal. B: Environ. 32 (2001) 195-204.
[83]D. Delimaris, T. Ioannides, “VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method”, Appl. Catal. B: Environ. 84 (2008) 303-312.
[84]S. Zuo, Q. Huang, J. Li, R. Zhou, “Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation”, Appl. Catal. B: Environ. 91 (2009) 204-209.
[85]X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, “MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature”, Appl. Catal. B: Environ. 62 (2006) 265-273.
[86]X. Tang, Y. Xu, W. Shen, “Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene”, Chem. Eng. J. 144 (2008) 175-180.
[87]李亭儀, “苯於CuO/Ce1-xMnxO2觸媒之全氧化反應研究”,中央大學碩士論文(2010).
[88]S. Azalim, M. Franco, R. Brahmi, J. M. Giraudon, J. F. Lamonier, “Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts”, J. Hazard. Mater. 188 (2011) 422–427.
[89]T. Rao, M. Shen, L. Jia, J. Hao, J. Wang, “Oxidation of ethanol over Mn–Ce–O and Mn–Ce–Zr–O complex compounds synthesized by sol–gel method”, Catal. Commun. 8 (2007) 1743–1747.
[90]W. Xiaodong, L. Qing, W. Duan, “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst”, J. Rare Earths 24 (2006) 549-553.
[91]M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide”, J. Catal, 115 (1989) 301-309.
[92]W. Xingyi, K. Qian, L. Dao, “Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts”, Appl. Catal. B: Environ. 86 (2009) 166-175.
[93]葉君棣,陳志堅,「X射線光電子分光儀應用手冊」,黎明書局,1984年8月。
[94]F. Larachi, J. Pierre, A. Adnot, A. Bernis, “Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts”, Appl. Surf. Sci. 195 (2002) 236-250.
[95]F. Buciuman, F. Patcas, R. Craciun, D. R. T. Zahn, “Vibrational spectroscopy of bulk and supported manganese oxides”, Phys. Chem. Chem. Phys. 1 (1999) 185-190.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔